» » Степень окисления углерода показывает сложность химических связей. Как расставлять степени окисления в органических соединениях? Определение степени окисления

Степень окисления углерода показывает сложность химических связей. Как расставлять степени окисления в органических соединениях? Определение степени окисления

Разберем задания №4 из вариантов ОГЭ за 2016 год.

Задания с решениями.

Задание №1.

Валентность неметаллов последовательно увеличивается в ряду водородных соединений, формулы которых:

1. HF → CH4 → H2O → NH3

2. SiH4 → AsH3 → H2S → HCl

3. HF → H2O → NH3 → CH4

4. SiH4 → H2S → AsH3 → HCl

Объяснение: расставим по порядке во всех вариантах ответа валентности неметаллов:

1. HF (I)→ CH4(IV) → H2O(II) → NH3(III)

2. SiH4(IV) → AsH3(III) → H2S(II) → HCl(I)

3. HF(I) → H2O(II) → NH3(III) → CH4(IV)

4. SiH4(IV) → H2S(II) → AsH3(III) → HCl(I)

Правильный ответ - 3.

Задание №2.

В веществах, формулы которых: CrO3, CrCl2, Cr(OH)3, хром проявляет степени окисления, соответственно равные:

1. +6, +2, +3

2. +6, +3, +2

3. +3, +2, +3

4. +3, +2, +6

Объяснение: определим у хрома степени окисления в данных соединениях: +6, +2, +3. Правильный ответ - 1.

Задание №3.

Азот проявляет одинаковую степень окисления в каждом из двух веществ, формулы которых:

1. N2O5 и LiNO3

2. Li3N и NO2

3. NO2 и HNO2

4. NH3 и N2O3

Объяснение: определим степени окисления азота в каждой паре соединений:

1. +5 и +5

2. -3 и +4

3. +4 и +3

4. -3 и +3

Правильный ответ - 1.

Задание №4.

В порядке уменьшения валентности в водородных соединениях элементы расположены в ряду:

1. Si → P → S → Cl

2. F → N → C → O

3. Cl → S → P → Si

4. O → S → Se → Te

Объяснение: напишем соответствующие водородные соединения с соответствующими валентностями для каждого ряда:

1. SiH4(IV) → PH3(III) → H2S(II) → HCl(I)

2. HF(I) → NH3(III) → CH4(IV) → H2O(II)

3. HCl(I) → H2S(II) → PH3(III) → SiH4(IV)

4. H2O(II) → H2S(II) → H2Se(II) → H2Te(II)

Правильный ответ - 1.

Задание №5.

Отрицательная степень окисления химических элементов численно равна:

1. номеру группы в периодической системе

2. Числу электронов, недостающих до завершения внешнего электронного слоя

3. Числу электронных слоев в атоме

4. Номеру периода, в котором находится элемент в периодической системе

Объяснение: электроны - отрицательные частицы, поэтому отрицательная степень окисления обозначает количество электронов, добранных до завершения уровня. Правильный ответ - 2.

(соответственно, положительная степень окисления обозначает недостаток электронов)

Задание №6.

Валентность хрома равна шести в веществе, формула которого:

1. Cr(OH)3 2. Cr2O3 3. H2CrO4 4. CrO

Объяснение: определим валентность хрома в каждом веществе:

1. Cr(OH)3 - III 2. Cr2O3 - III 3. H2CrO4 - VI 4. CrO - II

Правильный ответ - 3.

Задание №7.

Атомы серы и углерода имеют одинаковую степень окисления в соединениях

1. H2S и CH4

2. H2SO3 и CO

3. SO2 и H2CO3

4. Na2S и Al3C4

Объяснение: определим в каждой паре степени окисления серы и углерода:

1. +2 и -4

2. +4 и +2

3. +4 и +4

4. -2 и -4

Правильный ответ - 3.

Задание №8.

В порядке уменьшения валентности в высших оксидах элементы расположены в ряду:

1. Cl → S → P → Si

2. Si → P → S → Cl

3. N → Si → C → B

4. Na → K → Li → Cs

Объяснение: запишем формулы высших оксидов с соответствующими валентностями для каждого ряда элементов:

1. Cl2О7(VII) → SО3(VI)→ P2О5(V) → SiО2(IV)

Правильный ответ - 1.

Задание №9.

В каком соединении марганец имеет наибольшую степень окисления?

1. KMnO4 2. MnSO4 3. K2MnO4 4. MnO2

Объяснение: определит степень окисления марганца в каждом соединении:

1. KMnO4 - +7 2. MnSO4 - +2 3. K2MnO4 - +6 4. MnO2 - +4

Правильный ответ - 1.

Задание №10.

Высшую степень окисления углерод имеет в соединении:

1. С алюминием

2. С кальцием

3. С хлором

4. С железом

Объяснение: запишем соответствующие соединения углерода со степенями окисления:

1. Al4C3 (-4)

2. CaC2 (-4)

3. CCl (+4)

4. Fe3C (-2)

Правильный ответ - 3.

Задания для самостоятельной работы.

1. Нулевое значение степени окисления имеют все элементы в веществах, формулы которых:

1. SO2, H2S, H2

2. N2, NH3, HNO3

3. HBr, Br2, NaBr

4. H2, Br, N2

2. Вещество, в котором степень окисления фосфора равна -3, имеет формулу:

1. P2O5 2. P2O3 3. PCl3 4. Ca3P2

3. Степень окисления железа в соединениях, формулы которых Fe2O3 и Fe(OH)2, соответственно равна:

1. +3 и +3 2. +2 и +2 3. +3 и +2 4. +2 и +3

4. В соединениях, формула которого CaCO3, степень окисления углерода равна:

1. +2 2. -4 3. -2 4. +4

5. В соединениях, формула которого HClO3, степень окисления хлора равна:

1. +5 2. +3 3. +1 4. +7

6. В соединениях, формула которого H3PO4, степень окисления фосфора равна

1. +3 2. +5 3. +2 4. +1

7. Валентность углерода в соединениях, формулы которых СН4 и СО2, соответственно равна:

1. II и IV 2. II и II 3. IV и II 4. IV и IV

8. В соединении, формула которого Н2О2, степень окисления кислорода равна:

1. -2 2. -1 3. +2 4. +1

9. В соединении, формула которого Fe3O4, степень окисления железа равна:

1. +2, +3 2. +2 3. +3 4. +4

10. В перечне KClO3, Cl2, HF, KI, F2, CBr4, AgBr, число формул веществ, в которых галогены имеют нулевую степень окисления, равно

1. Одному 2. Двум 3. Трем 4. Четырем

Предоставленные задания были взяты из сборника для подготовки к ОГЭ по химии авторов: Корощенко А.С. и Купцовой А.А.

Изобретение относится к способу связывания углерода, выбрасываемого в атмосферу в виде СО 2 . Способ включает: a) этап концентрации CO 2 в жидкой фазе; b) этап электровосстановления в апротонной среде до соединения, в котором углерод имеет степень окисления +3, в виде щавелевой или муравьиной кислоты; c) в случае необходимости этап реэкстракции щавелевой или муравьиной кислоты в водную среду, осуществляемый, когда электровосстановление проводится в неводной среде; и d) этап минерализации при помощи реакции вышеуказанного соединения с соединением элемента М, где М представляет собой металлический элемент в степени окисления +2, приводящий к образованию устойчивого соединения, в котором атомное соотношение С/М составляет приблизительно 2/1. Способ позволяет связывать углерод с незначительными энергетическими затратами и подходит для ограничения выброса в атмосферу газа, обладающего парниковым эффектом, образующегося в результате сжигания ископаемых углеводородов. 25 з.п. ф-лы.

Изобретение касается способа связывания углерода, выбрасываемого в атмосферу в виде СО 2 .

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Электрохимическое восстановление СО 2 было изучено многочисленными исследователями, начиная с попыток его использования как обширный источник снабжения углеродом и до попыток его использования как источник энергии в виде метана.

Исследования в области электровосстановления СО 2 были начаты в середине 1960-х годов. Они показывают, что, с одной стороны, изменения среды в зависимости от того, является она апротонной или нет, и, с другой стороны, изменения электрода, учитывая то, что прослойка карбонильных радикалов взаимодействует с поверхностью, приводят к образованию различных компонентов, среди которых: монооксид углерода, муравьиная кислота, метан и этан, спирты, такие как метанол, этанол и пропанол, а также щавелевая кислота и даже гликолевая кислота.

Так, реакции электровосстановления СО 2 на медных электродах в среде карбоната калия дают выход метана порядка 30%.

Известны исследования, которые позволили идентифицировать продукты, преимущественно получаемые в более или в менее водосодержащих средах и с применением электродов различной природы.

Первый случай: радикал СО 2 - адсорбируется на электроде

Водная среда (электрод Au, Ag, Cu или Zn): образуется монооксид углерода

Второй случай: радикал СО 2 - не адсорбируется на электроде

Водная среда (электрод Cd, Sn, In, Pb, Tl или Hg): образуется муравьиная кислота

Неводная среда (электрод Pb, Tl или Hg): образуется щавелевая кислота

В этом же ключе проводились и эксперименты с использованием СО 2 в газовой фазе и перовскита, которые приводили преимущественно к образованию спиртов.

Известны также работы по захвату CO 2 органическими растворителями, которые позволяют в конце концов получить CO 2 в жидкой форме. Этот CO 2 затем закачивается в глубины океана или предпочтительно в подземные полости. Однако надежность такого хранения в течение достаточно длительных периодов имеет неопределенный характер.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Предлагается новый способ связывания углерода, выбрасываемого в атмосферу в виде CO 2 , который позволяет, в частности, связывать углерод с незначительными энергетическими затратами и в особенности подходит для ограничения выброса в атмосферу газа, обладающего парниковым эффектом, образующегося в результате сжигания ископаемых углеводородов.

Способ связывания углерода согласно изобретению включает:

a) этап концентрации CO 2 в жидкой фазе;

b) этап электровосстановления в апротонной среде в соединение, в котором углерод имеет степень окисления +3, в виде щавелевой или муравьиной кислоты;

c) в случае необходимости, этап реэкстракции щавелевой или муравьиной кислоты в водную среду; и

d) этап минерализации при помощи реакции с соединением элемента М, приводящей к образованию устойчивого соединения, в котором атомное соотношение С/М составляет приблизительно 2/1.

Ниже приводится более детальное описание последовательных этапов способа согласно изобретению.

Этап концентрации СО 2 в жидкой фазе (а) может быть реализован различными методами.

Первый метод (i) заключается в сжижении СО 2 согласно классическим способам улавливания, жидкий СО 2 получают тогда под давлением, например, в суперкритическом состоянии.

Другой путь (ii) заключается в абсорбции СО 2 в полярной апротонной жидкости, не поддающейся смешиванию с водой или поддающейся смешиванию с водой в различных пропорциях. В качестве примера можно привести ацетонитрил.

Согласно другому пути (iii) рассматривают абсорбцию СО 2 в ионной апротонной жидкости (или "расплавленной соли") не поддающейся смешиванию с водой или поддающейся смешиванию с водой в различных пропорциях. Соответствующей подходящей ионной жидкостью является гексафторфосфат 1-бутил-3-метилимидазола, представленный формулой + PF6 - .

Еще один путь (iv) состоит в абсорбции СО 2 в водной фазе, содержащей спирт и/или амин.

Другой метод (v) заключается в абсорбции СО 2 в гидратированной форме, например, в водном растворителе, активированном энзиматически. Энзимом, активизирующим гидратирование, является, главным образом, карбоангидраза. В этом случае полученный раствор может затем быть рециркулирован для метода абсорбции в водной фазе в присутствии спирта и/или амина так, как это описано выше в (iii).

Водный раствор, полученный по методу абсорбции, подобному тем, что описаны выше в (iv) и (v), может также быть рециркулирован для вышеописанного метода сжижения (i).

К тому же водные растворы, такие как полученные описанными выше методами (iii) или (iv), обычно могут быть перенесены в жидкую не растворимую в воде ионную среду методом экстракции в системе жидкость-жидкость.

В соответствии с методом, использованным для реализации первого этапа концентрации в жидкой фазе согласно изобретению, полученная жидкая фаза будет состоять из жидкого СО 2 или из раствора СО 2 или угольной кислоты в полярной апротонной жидкости, не смешиваемой с водой или смешиваемой с водой в различных соотношениях, или же в ионной неводной жидкости ("расплавленная соль") более или менее смешиваемой с водой.

Второй этап способа согласно изобретению заключается в электровосстановлении СО 2 или угольной кислоты, сконцентрированной в жидкой фазе (степень окисления +4), в соединение, в котором углерод находится в степени окисления +3. Восстановление проводится в жидкой фазе, полученной на предыдущем этапе, при значении рН, находящемся, главным образом, между 3 и 10, предпочтительнее между 3 и 7, и с анодом, поддерживаемым при потенциале от +0,5 до -3,5 вольт по отношению к нормальному водородному электроду. Анод может быть, например, из платины, алмаза, легированного бором, или углерода, легированного азотом.

Путем такого электровосстановления получают оксалат-ион (в виде щавелевой кислоты или оксалата) или формиат-ион (в виде муравьиной кислоты или формиата).

Этап (b) электровосстановления в случае необходимости проводится в жидком СО 2 под давлением.

Этап (b) электровосстановления может, кроме того, проводиться в подземном хранилище, в которое жидкий CO 2 может быть при необходимости закачан.

Третий этап (с) способа согласно изобретению заключается в реэкстракции щавелевой кислоты (или оксалата) или же муравьиной кислоты (или формиата) водной фазой. Такая реэкстракция осуществляется в случае, когда электровосстановление проводилось в неводной среде. Образование муравьиной кислоты при электровосстановлении происходит, главным образом, в водной фазе, и в этом случае нет необходимости прибегать к проведению этого этапа (с) реэкстракции водной фазой.

Заключительный этап (d) способа согласно изобретению (этап минерализации) состоит в основном из воздействия на карбонатный минерал, например известковый или магнезитный, водным раствором щавелевой кислоты (или оксалата) или же муравьиной кислоты (или формиата), полученным на этапе электровосстановления (или же, возможно, после реэкстракции). Вышеупомянутый раствор вступает в реакцию с соединением элемента М с образованием минерала, в котором атомное соотношение С/М равно приблизительно 2/1.

Реакция оксалатного или формиатного соединения с карбонатным минералом дает один моль CO 2 на моль С 2 О 4 .

МСО 3 +(СООН) 2 МС 2 O 4 +CO 2 +Н 2 O или

МСО 3 +2НСООН М(НСО 2) 2 +CO 2 +H 2 O

Высвобожденный таким образом CO 2 в количестве, в два раза меньшем, чем было задействовано вначале, может быть снова возвращен в цикл способа согласно изобретению на первом этапе.

Элементом M может быть любой металлический элемент в степени окисления +2. Это чаще всего кальций или магний. Соединением элемента М может быть тогда, например, известковая или магнезитная порода. Предпочтительно элемент M является кальцием. Образующийся минерал - это предпочтительно оксалат кальция, такой как вевеллит СаС 2 О 4 ·Н 2 О.

Способ согласно изобретению (или только его последний этап) может быть реализован как в месте нахождения (in situ) в известковой или магнезитной породе, так и вне его (ex situ).

Таким образом, заключительный этап минерализации (d) может осуществляться при введении в контакт с осадочной породой, например известковой или магнезитной, раствора щавелевой или муравьиной кислоты предпочтительно путем его закачивания под землю.

Заметим, что с точки зрения энергетического баланса способа согласно изобретению энергия, приложенная для того, чтобы перевести углерод +4 в углерод +3 в реакции электровосстановления на втором этапе, не потеряна - она фактически хранится в оксалате или формиате образующегося минерала. Щавелевая или муравьиная кислота может быть с успехом повторно извлечена в дальнейшем, чтобы быть использованной для сжигания, например, in situ. Речь может идти об окислении, например бактериальном, in situ или ex situ. В этих процессах углерод перешел бы в степень окисления +4.

Реактор заполнен жидким СО 2 под давлением (50 бар при комнатной температуре), к которому постепенно добавляется вода таким образом, чтобы поддерживать молярное соотношение СО 2 /Н 2 О порядка 100 для того, чтобы ориентировать реакцию в сторону синтеза щавелевой кислоты.

Электрод выполнен из платины, плотность тока составляет 5 мА/см 2 . Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe + . Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

После электровосстановления образовавшаяся щавелевая кислота закачивается в резервуар, содержащий карбонат кальция. Щавелевая кислота реагирует с карбонатом с образованием оксалата кальция. Увеличение массы сухого и очищенного остатка указывает на связывание СО 2 в виде минерала.

Жидкий СО 2 получен классическим методом сжижения.

После добавления перхлората тетрааммония он был закачан в подземную полость, содержащую известковые или магнезитные породы.

Электровосстановление проводится прямо в подземной полости при помощи платинового электрода. Плотность тока составляет 5 мА/см 2 . Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe + . Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

Синтезируемая таким образом щавелевая кислота вступает в реакцию с известковыми или магнезитными породами, высвобождая СО 2 , который, в свою очередь, восстанавливается в двухвалентный катион, осаждающийся вместе с оксалатом. Реакции приводят в конечном итоге к связыванию СО 2 в виде минерала. Высвобожденный СО 2 повторно рециркулируется на этап сжижения.

СО 2 абсорбируется водой в присутствии карбоангидразы согласно описанию патента US-A-6524843.

Добавляется перхлорат тетрааммония в количестве 0,1 моль/л.

Количество СО 2 , подлежащего электровосстановлению, определяет необходимое количество электроэнергии.

После электровосстановления образовавшаяся муравьиная кислота закачивается в резервуар, содержащий карбонат кальция. Муравьиная кислота реагирует с карбонатом с образованием формиата кальция. Увеличение массы сухого и очищенного остатка указывает на связывание СО 2 в виде минерала.

СО 2 абсорбируется в ионной жидкости - гексафторфосфате 1-бутил-3-метилимидазола, представленной формулой + PF6 - .

Добавляется перхлорат тетрааммония в количестве 0,1 моль/л.

Электрод выполнен из платины, и плотность тока составляет 5 мА/см 2 . Потенциал электрода -3 В по отношению к потенциалу пары Fe/Fe + . Раствор перемешивается, чтобы ограничить концентрационные эффекты вблизи электродов.

Количество СО 2 , подлежащего электровосстановлению, определяет необходимое количество электроэнергии.

Ионная жидкость, насыщенная СО 2 , вводится в непрерывный контакт с водным раствором, который извлекает из нее оксалат.

Образовавшийся водный раствор щавелевой кислоты закачивается в резервуар, содержащий карбонат кальция. Щавелевая кислота реагирует с карбонатом с образованием оксалата кальция. Увеличение массы сухого и очищенного остатка указывает на связывание СО 2 в виде минерала.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ связывания диоксида углерода, выбрасываемого в атмосферу, отличающийся тем, что он включает:

a) этап концентрации СО 2 в жидкой фазе;

b) этап электровосстановления в апротонной среде до соединения, в котором углерод имеет степень окисления +3 в виде щавелевой или муравьиной кислоты;

c) в случае необходимости, этап реэкстракции щавелевой или муравьиной кислоты в водную среду, осуществляемый когда электровосстановление проводится в неводной среде; и

d) этап минерализации при помощи реакции вышеуказанного соединения с соединением элемента М, где М представляет собой металлический элемент в степени окисления +2, приводящий к образованию минерала, в котором атомное соотношение С/М составляет приблизительно 2/1.

2. Способ по п.1, отличающийся тем, что этап (а) концентрации в жидкой фазе состоит в сжижении СО 2 , жидкий СО 2 получают затем под давлением, например, в суперкритическом состоянии.

3. Способ по п.1, отличающийся тем, что этап (а) концентрации в жидкой фазе состоит в абсорбции СО 2 в полярной апротонной жидкости, не смешиваемой с водой или смешиваемой с водой в различных соотношениях.

4. Способ по п.1, отличающийся тем, что этап (а) концентрации в жидкой фазе состоит в абсорбции CO 2 в ионной апротонной жидкости, не смешиваемой с водой или смешиваемой с водой в различных соотношениях.

5. Способ по п.4, отличающийся тем, что вышеупомянутая ионная апротонная жидкость представляет собой гексафторфосфат 1-бутил-3-метилимидазола.

6. Способ по п.1, отличающийся тем, что этап (а) концентрации в жидкой фазе состоит в абсорбции СО 2 в водной среде, содержащей спирт и/или амин.

7. Способ по п.6, отличающийся тем, что полученный водный раствор рециркулируют на процесс сжижения согласно п.2.

8. Способ по п.6, отличающийся тем, что полученный водный раствор переносят в жидкую не растворимую в воде ионную среду путем экстракции в системе жидкость-жидкость.

9. Способ по п.1, отличающийся тем, что этап (а) концентрации в жидкой фазе состоит в абсорбции СО 2 в гидратированной форме, причем упомянутый процесс концентрации активируется энзиматическим путем.

10. Способ по п.9, отличающийся тем, что полученный водный раствор переносят в жидкую нерастворимую в воде ионную среду путем экстракции в системе жидкость-жидкость.

11. Способ по п.9, отличающийся тем, что энзимом, активизирующим гидратирование, служит карбоангидраза.

12. Способ по п.11, отличающийся тем, что полученный водный раствор рециркулируют на процесс абсорбции в водной среде в присутствии спирта и/или амина согласно п.6.

13. Способ по п.12, отличающийся тем, что полученный водный раствор рециркулируют на процесс сжижения согласно п.2.

14. Способ по одному из пп.1-13, в котором этап (b) электровосстановления проводят при значении рН между 3 и 10 и с анодом, поддерживаемым при потенциале от +0,5 до -3,5 вольта по отношению к нормальному водородному электроду.

15. Способ по п.14, в котором значение рН находится между 3 и 7.

16. Способ по п.14, в котором используемый на этапе (b) электровосстановления анод состоит из платины, алмаза, легированного бором, или углерода, легированного азотом.

17. Способ по одному из пп.1-13, 15 и 16, в котором этап (b) электровосстановления проводит в жидком СО 2 под давлением.

18. Способ по одному из пп.1-13, 15 и 16, в котором соединением, получаемым на этапе (b) электровосстановления, является щавелевая кислота или оксалат.

19. Способ по п.18, в котором щавелевая кислота или оксалат, полученные в неводной среде, реэкстрагируют водной фазой.

20. Способ по одному из пп.1-13, 15 и 16, в котором на выходе с этапа (а) жидкий CO 2 закачивают в подземное хранилище СО 2 .

21. Способ по п.20, в котором этап (b) электровосстановления проводят в подземном хранилище СО 2 .

22. Способ по одному из пп.1-13, 15 и 16, в котором конечный этап (d) минерализации заключается в воздействии на карбонатный минерал водным раствором щавелевой кислоты или муравьиной кислоты, полученным на этапе электровосстановления.

23. Способ по п.22, в котором вышеупомянутый карбонатный минерал представляет собой карбонатный минерал, известковый или магнезитный.

24. Способ по одному из пп.1-13, 15 и 16, в котором на этапе минерализации (d) элементом М является кальций, а образующимся минералом - вевеллит СаС 2 O 4 ·Н 2 O.

25. Способ по одному из пп.1-13, 15 и 16, в котором этап минерализации (d) осуществляют при введении в контакт с осадочной породой, например, известковой или магнезитной, водного раствора щавелевой или муравьиной кислоты, полученного на этапе электровосстановления.

26. Способ по одному из пп.1-13, 15 и 16, в котором конечный этап минерализации (d) проводят путем закачивания раствора под землю.

Степень окисления - условная величина, использующаяся для записи окислительно-восстановительных реакций. Для определения степени окисления используется таблица окисления химических элементов.

Значение

Степень окисления основных химических элементов основана на их электроотрицательности. Значение равно числу смещённых в соединениях электронов.

Степень окисления считается положительной, если электроны смещаются от атома, т.е. элемент отдаёт электроны в соединении и является восстановителем. К таким элементам относятся металлы, их степень окисления всегда положительная.

При смещении электрона к атому значение считается отрицательным, а элемент - окислителем. Атом принимает электроны до завершения внешнего энергетического уровня. Окислителями является большинство неметаллов.

Простые вещества, не вступающие в реакцию, всегда имеют нулевую степень окисления.

Рис. 1. Таблица степеней окисления.

В соединении положительную степень окисления имеет атом неметалла с меньшей электроотрицательностью.

Определение

Определить максимальную и минимальную степень окисления (сколько электронов может отдавать и принимать атом) можно по периодической таблице Менделеева.

Максимальная степень равна номеру группы, в которой находится элемент, или количеству валентных электронов. Минимальное значение определяется по формуле:

№ (группы) – 8.

Рис. 2. Таблица Менделеева.

Углерод находится в четвёртой группе, следовательно, его высшая степень окисления +4, а низшая - -4. Максимальная степень окисления серы +6, минимальная - -2. Большинство неметаллов всегда имеет переменную - положительную и отрицательную - степень окисления. Исключением является фтор. Его степень окисления всегда равна -1.

Следует помнить, что к щелочным и щелочноземельным металлам I и II групп соответственно, это правило не применимо. Эти металлы имеют постоянную положительную степень окисления - литий Li +1 , натрий Na +1 , калий K +1 , бериллий Be +2 , магний Mg +2 , кальций Ca +2 , стронций Sr +2 , барий Ba +2 . Остальные металлы могут проявлять разную степень окисления. Исключением является алюминий. Несмотря на нахождение в III группе, его степень окисления всегда +3.

Рис. 3. Щелочные и щелочноземельные металлы.

Из VIII группы высшую степень окисления +8 могут проявлять только рутений и осмий. Находящиеся в I группе золото и медь проявляют степень окисления +3 и +2 соответственно.

Запись

Чтобы правильно записывать степень окисления, следует помнить о нескольких правилах:

  • инертные газы не вступают в реакции, поэтому их степень окисления всегда равна нулю;
  • в соединениях переменная степень окисления зависит от переменной валентности и взаимодействия с другими элементами;
  • водород в соединениях с металлами проявляет отрицательную степень окисления - Ca +2 H 2 −1 , Na +1 H −1 ;
  • кислород всегда имеет степень окисления -2, кроме фторида кислорода и пероксида - O +2 F 2 −1 , H 2 +1 O 2 −1 .

Что мы узнали?

Степень окисления - условная величина, показывающая, сколько электронов принял или отдал атом элемента в соединении. Величина зависит от количества валентных электронов. Металлы в соединениях всегда имеют положительную степень окисления, т.е. являются восстановителями. Для щелочных и щелочноземельных металлов степень окисления всегда одинаковая. Неметаллы, кроме фтора, могут принимать положительную и отрицательную степень окисления.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 219.

В большинстве неорганических соединений углерод проявляет степени окисления –4, +4, +2.

В природе содержание углерода составляет 0,15% (мол. доли) и находится в основном в составе карбонатных минералов (прежде всего известняка и мрамора СаСО 3 , магнезита МgСО 3 , доломита МgСО 3 ∙СаСО 3 , сидерита FeСО 3), каменного угля , нефти , природного газа , а также в виде графита и реже алмаза . Углерод – главная составная часть живых организмов.

Простые вещества. Простые вещества элемента углерода имеют полимерное строе­ние, и в соответствии с характерными гибридными состояниями орбиталей атомы углерода могут объединяться в полимерные образования координационной (sp 3 ), слоистой (sp 2) и линейной (sp ) структуры, что соответствует типам простых веществ: алмаз (β-С), графит (α-С) и карбин (С 2)n . В 1990 г. получена четвертая модификация углерода – фуллерен С 60 и С 70 .

Алмаз – бесцветное кристаллическое вещество с кубической решеткой, в которой каждый атом углерода связан σ-связями с четырьмя соседними – это обусловливает исключительную твердость и отсутствие электронной проводимости в обычных условиях.

Карбин – черный порошок с гексагональной решеткой, построенной из прямолинейных σ- и π-связей: –С≡С–С≡С–С≡ (полиин ) или =С=С=С=С=С= (поликумулен ).

Графит – устойчивая форма существования элемента углерода; серо-черный, с металлическим блеском, жирный на ощупь, мягкий неметалл, обладает проводимостью. При обычной температуре весьма инертен. При высоких температурах непосредственно взаимодействует с многи­ми металлами и неметаллами (водородом, кислородом, фтором, серой). Типичный восстановитель; реагирует с водяным паром, концентрированной азотной и серной кислотами, оксидами металлов. В «аморфном» состоянии (уголь, кокс, сажа) легко сгорает на воздухе.

C + H 2 O(пар, 800-1000°С) = CO + H 2

C + 2H 2 SO 4 (конц.) = CO 2 + 2SO 2 + 2H 2 O

C + 4HNO 3 (конц.) = CO 2 + 4NO 2 + 2H 2 O

C + 2H 2 (600°С, kat. Pt) = CH 4

C + O 2 (600-700°С) = CO 2

2C + O 2 (выше 1000°С) = 2CO

2С + Ca(550°С) = CaC 2

С + 2PbO(600°С) = 2Pb + CO 2

C + 2F 2 (выше 900°С) = CF 4

Вследствие очень высокой энергии актива­ции превращения модификаций углерода возможны лишь при особых условиях. Так, алмаз превращается в графит при нагревании до 1000–1500°С (без доступа воздуха). Переход графита в алмаз требует очень высокого давления (6∙10 9 –10∙10 10 Па); освоен метод получения алмаза при низком давлении.

C(алмаз) = С(графит) (выше 1200°С)

(C 2) n (карбин) = 2n С(графит) (2300°С)

Получение и применение. Из графита изготовляют электроды, плавильные тигли, футеровку электрических печей и промышленных электролизных ванн и др. В ядерных реакторах его используют в качестве замедлителя нейтронов. Графит применяют также как смазочный материал и т. д. Исключительная твердость алмаза обусловливает его широкое применение для обработки особо твердых материалов, при буровых работах, для вытягивания проволоки и т. д. Наиболее совершенные кристаллы алмаза используют после огранки и шлифовки для изготовления ювелирных изделий (бриллианты).

Благодаря большой адсорбционной способности древесного и животного углей (кокс, древесный уголь, костяной уголь, сажа) они применяются для очистки веществ от примесей. Кокс, получаемый при сухой переработке каменного угля, применяется главным образом в металлургии при выплавки металлов. Сажа используется в производстве черной резины, для изготовления красок, туши и т. д.

Диоксид углерода CO 2 используют в производстве соды, для тушения пожаров, приготовления минеральной воды, как инертную среду при проведении различных синтезов.

Соединения с отрицательной степенью окисления. С менее электроотрицательными, чем он сам, элементами углерод дает карбиды. По­скольку для углерода характерно образовывать гомоцепи, состав боль­шинства карбидов не отвечает степени окисления углерода –4. По типу химической связи можно выделить ковалентные, ионно-ковалентные и металлические карбиды.

Ковалентные карбиды кремния SiC и бора B 4 C – полимерные вещества, характеризующиеся очень высокой твердостью, тугоплав­костью и химической инертностью.

Простейшим ковалентным карбидом является метан СН 4 – химически весьма инертный газ; на него не действуют кислоты и щелочи, однако он легко загорается, и его смеси с воздухом чрезвычайно взрывоопасны. Метан – основной компонент природного (60–90%) рудничного и болотного газа. Богатые метаном газы используются как топливо и сырье для химического производства.

Углерод образует многообразные перкарбиды , например, некоторые простейшие углеводороды – этан С 2 Н 6 , этилен С 2 Н 4 , ацетилен С 2 Н 2 .

Ионно-ковалентные карбиды – кристаллические солеподобные вещества. При действии воды или разбавленной кислоты они разру­шаются с выделением углеводородов. Поэтому карбиды подобного типа можно рассматривать как производные соответствующих углево­дородов. Производные метана – метаниды , например, карбиды Ве 2 С и АlС 3 . Они разлагаются водой, выделяя метан:

АlС 3 + 12Н 2 О = 4Al(ОН) 3 + 3СН 4 ­

Из солеподобных перкарбидов наиболее изучены ацетилиды типа М 2 +1 С 2 , М +2 С 2 и М 2 +3 (С 2) 3 . Имеющий наибольшее значение ацетилид кальция СаС 2 (называемый карбидом) получают нагреванием СаО с углем в электро­печах:

СaO + 3C = CaC 2 + CO

Ацетилиды более или менее легко разлагаются водой с образованием ацетилена:

СаС 2 + 2Н 2 O = Са(ОН) 2 + С 2 Н 2

Эта реакция используется в технике для получения ацетилена.

Металлическими являют­ся карбиды d -элементов IV–VIII групп. Чаще всего встречаются карбиды среднего состава МС (TiC, ZrC, HfC, VC, NbC, ТаС), М 2 С (Мо 2 С, W 2 С), М 3 С (Мn 3 С, Fe 3 С, Со 3 С). Металлические карбиды входят в состав чугунов и сталей, прида­вая им твердость, износоустойчивость и другие ценные качества. На основе карбидов вольфрама,титана и тантала производят сверхтвер­дые и тугоплавкие сплавы, применяемые для скоростной обработки металлов.

Соединения углерода (IV). Степень окисления углерода +4 прояв­ляется в его соединениях с более электроотрицательными, чем он сам, неметаллами: СНаl 4 , СОНаl 2 , СО 2 , COS, CS 2 и анионных комплексах CO 3 2– , COS 2 2– , CS 3 2– .

По химической природе эти соединения углерода (IV) являются кислотными. Некоторые из них взаимодействуют с водой, образуя кислоты:

СO 2 + Н 2 O = Н 2 СО 3

СOCl 2 + 3Н 2 О = Н 2 СО 3 + 2НCl

и с основными соединениями, образуя соли:

2КОН + СO 2 = К 2 СО 3 + Н 2 О

Из тетрагалогенидов CHal 4 наибольшее применение получил тетрахлор метан СCl 4 в ка­честве негорючего растворителя органических веществ, а также жид­кости для огнетушителей. Его получают хлорированием сероуглерода в присутствии катализатора:

CS 2 + Cl 2 = CCl 4 + S 2 Cl 2

Смешанный фторид-хлорид углерода ССl 2 F 2 – фреон (t кип. –30 °С) применяется в качестве хладагента в холодильных машинах и установках. Не ядовит. При попадании в атмосферу разрушает озоновый слой.

Дисульфид углерода или сероуглерод СS 2 (ядовит) получают взаимодействием паров серы с раскаленным углем: C + 2S = СS 2

Сероуглерод легко окисляется, при небольшом нагреве воспламеняется на воздухе: СS 2 + 3O 2 = CO 2 + 2SO 2

Все оксодигалогениды (карбонилгалогениды) COHal 2 значительно более реакционноспособны, чем тетрагалогениды; в частности, они легко гидролизуются:

СОСl 2 + Н 2 O = СO 2 + 2НCl

Наибольшее применение находит СОCl 2 (фосген, хлористый карбонил )чрезвы­чайно ядовитый газ. Его широко используют в органическом синтезе.

Диоксид углерода CO 2 (углекислый газ ) в технике обычно получают термическим разложением СаСО 3 , а в лаборатории – действием на СаСО 3 хлороводородной кислотой.

СаСО 3 = CaO + CO 2 СаСО 3 + 2HCl = CaCl 2 + CO 2

Диоксид углерода легко поглощается растворами щелочей, при этом образуется соответствующий карбонат , а при избытке СО 2 – гидро­карбонат :

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O

CaCO 3 ↓ + CO 2 = Ca(HCO 3) 2

Гидрокарбонаты в отличие от карбонатов в большинстве своем раство­римы в воде.

Растворимость CO 2 в воде невелика, некоторая часть растворенного диоксида углерода взаимодействует с водой с образованием неустойчивой средней угольной кислоты Н 2 СО 3 (триоксокарбонат водорода).

Сульфидокарбонаты (IV) (тиокарбонаты) во многом напоминают триоксокарбонаты (IV). Их можно получить взаимодейст­вием сероуглерода с основными сульфидами, например:

К 2 S + СS 2 = К 2 [СS 3 ]

Водный раствор Н 2 СS 3 – слабая тиоугольная кислота . Постепенно разлагается водой, образуя угольную кислоту и сероводород:

Н 2 СS 3 + 3Н 2 О = Н 2 СО 3 + 3Н 2 S

Из нитридокарбонатов важное значение имеет цианамид кальция СаСN 2 , получаемый окислением кар­бида кальция СаС 2 азотом при нагревании:

СаС 2 + N 2 = СаСN 2 + С

Из оксонитридокарбонатов водорода наибольшее значение имеет мочевина (карбамид ) СО(NH 2) 2 , получаемая действием СО 2 на водный раствор аммиака при 130° С и 1∙10 7 Па:

СО 2 + 2N 3 Н = СО(NH 2) 2 + Н 2 О

Мочевина применяется в качестве удобрения и для подкормки скота, как исходный продукт для получения пластических масс, фармацевтических препаратов (веронала, люминала и др.) и пр.

Сульфидонитридокарбонат (IV) водорода или тиоцианат водо­рода НSСN в водном растворе обра­зует сильную (типа НCl) тиоцианистоводородную кислоту . Тиоцианиты в основном применяют при крашении тканей; NН 4 SСN используют как реактив на ионы Fe 3+ .

Соединения углерода (II). Производные углерода (II) – это СО, СS, HCN.

Оксид углерода (II) СО (угарный газ ) образуется при сгорании углерода или его соединений в недостатке кислорода, а также в результате взаимодействия оксида углерода (IV) с раскаленным углем.

СО 2 + С ↔ 2СО

В молекуле СО имеется тройная связь, как в N 2 и цианид-ионе CN – . В обычных условиях оксид углерода (II) химически весьма инертен. При нагревании проявляет восстановительные свойства, что широко используется в пирометаллургии.

При нагревании СО окисляется серой, при облучении или в присутствии катализатора взаимодействует с хлором и т. д.

СО + S = СOS (оксосульфид углерода IV);

CO + Cl 2 = СОCl 2 (оксохлорид углерода IV)

Цианид водорода HCN имеет линейную структуру H–C≡N; существует также ее таутомерная форма (изоцианид водорода ) H–N≡C. Водный раствор цианида водорода – очень слабая кислота, называемая синильной или цианистоводород­ной.

HCN – сильнейший неорганический яд.

Цианиды проявляют восста­новительные свойства. Так, при нагревании их растворов они посте­пенно окисляются кислородом воздуха, образуя цианаты:

2KCN + O 2 = 2KOCN

а при кипячении растворов цианидов с серой образуются тиоцианаты (на этом основано получение тиоцианатов):

2KCN + S = 2KSCN

Цианид водорода применяют в органическом синтезе, NаСN и КСN – при добыче золота, для получения комплексных цианидов и т. д.

При нагревании цианидов малоактивных металлов образуется дициан (СN) 2 – очень реакционноспособный ядовитый газ.

Степени окисления в органических соединениях требуется уметь расставлять для решения заданий ЕГЭ по химии, в которых дается цепочка превращений органических веществ, часть из которых неизвестна. На данный момент это задания номер 32.

Для определения степени окисления в органических соединениях существует два метода. Суть их одинакова, но выглядят применение данных методов по-разному.

Первый способ я бы назвал методом блоков.

Метод блоков

Берем органическую молекулу, например, такого вещества, как 2-гидроксипропаналь

и изолируем друг от друга все фрагменты молекулы, содержащие по одному атому углерода следующим образом:

Суммарный заряд каждого такого блока принимаем равным нулю, как у отдельной молекулы. В органических соединениях водород всегда имеет степень окисления, равную +1, а кислород — -2. Обозначим степень окисления атома углерода в первом блоке переменной х. Таким образом, мы можем найти степень окисления первого атома углерода, решив уравнение:

x + 3∙(+1) = 0, где x – степень окисления атома углерода, +1 – степень окисления атома водорода, а 0 – заряд выбранного блока.

x + 3 = 0, отсюда x = -3.

Таким образом, степень окисления атома углерода в первом блоке равна -3.

Во второй блок, помимо одного атома углерода и двух атомов водорода, входит также и атом кислорода, который, как мы уже сказали, имеет в органических соединениях практически всегда степень окисления, равную -2. Как и в первом случае, обозначим степень окисления атома углерода второго блока через х, тогда получим следующее уравнение:

x+2∙(+1)+(-2) = 0, решая которое находим, что х = 0. Т.е. степень окисления второго атома углерода в молекуле равна нулю.

Третий блок состоит из одного атома углерода, одного атома водорода и одного атома кислорода. Аналогично составим уравнение:

x +1∙(-2)+ 1 = 0, отсюда х, то есть степень окисления атома углерода в третьем блоке равна +1.

Второй метод расстановки степеней окисления в органических веществах я называю «метод стрелок».

Метод стрелок

Для того, чтобы его использовать, нужно нарисовать сначала развернутую структурную формулу органического вещества:

Под черточками между символами элементов понимают их общие электронные пары, которые между одинаковыми атомами можно считать распределенными поровну, а между разными – смещенными к одному из атомов, обладающему большей электроотрицательностью. Среди трех элементов С, Н и О наибольшую элетроотрицательность имеет кислород, затем углерод, а самое малое значение электроотрицательности у водорода. Поэтому, если показать стрелочкой смешение электронов в сторону более электроотрицательных атомов, мы получим следующую картинку:

Как можно заметить, между атомами углерода мы не стали рисовать стрелку, оставив обычную черточку, поскольку считается, что общая электронная пара между двумя атомами углерода практически не смещена ни к одному из них.

Будет интерпретировать последний рисунок следующим образом: каждый атом, из которого стрелка исходит, «теряет» один электрон, а каждый атом, в который стрелка входит, «принимает» электрон. При этом помним, что заряд электрона отрицателен и равен -1.

Таким образом, первому атому углерода достается от трех атомов водорода по одному электрону (три входящих стрелки), в результате чего он приобретает условный заряд, т.е. степень окисления, равную -3, а каждый атома водорода — +1 (по одной исходящей стрелке).

Второму атому углерода достается от «верхнего» атома водорода один электрон (стрелка от H к С), и еще один электрон атом углерода «теряет», передавая его атому кислорода (стрелка от С к О). Таким образом, в атом углерода «входит» один электрон и один из него «выходит». Поэтому степень окисления второго атома углерода равна 0, как в отдельном атоме.

К атому кислорода направлены две стрелки, значит, он имеет степень окисления, равную -2, а от всех атомов водорода исходит по одной стрелке. То есть степень окисления всех атомов водорода равна +1.

В последний атом углерода входит одна стрелка от Н и исходит две стрелки к О, таким образом, «входит» один электрон и «выходят» два. Значит, степень окисления равна +1.

Нужно отметить, что на самом деле оба описанных метода весьма условны, как, собственно, и условно само понятие «степень окисления» в случае органических веществ. Тем не менее, в рамках школьной программы данные методы вполне справедливы и, главное, позволяют использовать их при расстановке коэффициентов в реакциях ОВР с органическими веществами. Лично мне нравится больше метод «стрелок». Советую усвоить оба метода: одним из них вы можете определять степени окисления, а вторым — убедиться в правильности полученных значений.