» » Рентгеновский анализ. Методы рентгеноструктурного анализа

Рентгеновский анализ. Методы рентгеноструктурного анализа

Брест, 2010

В рентгеноструктурном анализе в основном используются три метода

1. Метод Лауэ. В этом методе пучок излучения с непрерывным спектром падает на неподвижный монокристалл. Дифракционная картина регистрируется на неподвижную фотопленку.

2. Метод вращения монокристалла. Пучок монохроматического излучения падает на кристалл, вращающийся (или колеблющийся) вокруг некоторого кристаллографического направления. Дифракционная картина регистрируется на неподвижную фотопленку. В ряде случаев фотопленка движется синхронно с вращением кристалла; такая разновидность метода вращения носит название метода развертки слоевой линии.

3. Метод порошков или поликристаллов (метод Дебая-Шеррера-Хэлла). В этом методе используется монохроматический пучок лучей. Образец состоит из кристаллического порошка или представляет собой поликристаллический агрегат.

Метод Лауэ

Метод Лауэ применяется на первом этапе изучения атомной структуры кристаллов. С его помощью определяют сингонию кристалла и лауэвский класс (кристаллический класс Фриделя с точностью до центра инверсии). По закону Фриделя никогда невозможно обнаружить отсутствие центра симметрии на лауэграмме и поэтому добавление центра симметрии к 32-м кристаллическим классам уменьшает их количество до 11. Метод Лауэ применяется главным образом для исследования монокристаллов или крупнокристаллических образцов. В методе Лауэ неподвижный монокристалл освещается параллельным пучком лучей со сплошным спектром. Образцом может служить как изолированный кристалл, так и достаточно крупное зерно в поликристаллическом агрегате.

Формирование дифракционной картины происходит при рассеянии излучения с длинами волн от l min = l 0 = 12,4/U , где U- напряжение на рентгеновской трубке, до l m - длины волны, дающей интенсивность рефлекса (дифракционного максимума), превышающую фон хоть бы на 5 %. l m зависит не только от интенсивности первичного пучка (атомного номера анода, напряжения и тока через трубку), но и от поглощения рентгеновских лучей в образце и кассете с пленкой. Спектру l min - l m соответствует набор сфер Эвальда с радиусами от 1/ l m до 1/l min , которые касаются узла 000 и ОР исследуемого кристалла (рис.1).

Тогда для всех узлов ОР, лежащих между этими сферами, будет выполняться условие Лауэ (для какой-то определенной длины волны в интервале (l m ¸ l min)) и, следовательно, возникает дифракционный максимум - рефлекс на пленке. Для съемки по методу Лауэ применяется камера РКСО (рис.2).

Рис. 2 Камера РКСО


Здесь пучок первичных рентгеновских лучей вырезается диафрагмой 1 с двумя отверстиями диаметрами 0,5 - 1,0 мм. Размер отверстий диафрагмы подбирается таким образом, чтобы сечение первичного пучка было больше поперечного сечения исследуемого кристалла. Кристалл 2 устанавливается на гониометрической головке 3, состоящей из системы двух взаимно перпендикулярных дуг. Держатель кристалла на этой головке может перемещаться относительно этих дуг, а сама гониометрическая головка может быть повернута на любой угол вокруг оси, перпендикулярной к первичному пучку. Гониометрическая головка позволяет менять ориентацию кристалла по отношению к первичному пучку и устанавливать определенное кристаллографическое направление кристалла вдоль этого пучка. Дифракционная картина регистрируется на фотопленку 4, помещенную в кассету, плоскость которой расположена перпендикулярно к первичному пучку. На кассете перед фотопленкой натянута тонкая проволока, расположенная параллельно оси гониометрической головки. Тень от этой проволоки дает возможность определить ориентацию фотопленки по отношению к оси гониометрической головки. Если образец 2 располагается перед пленкой 4, то рентгенограммы, полученные таким образом называются лауэграммами. Дифракционная картина, регистрируемая на фотопленку, расположенную перед кристаллом, называется эпиграммой. На лауэграммах дифракционные пятна располагаются по зональным кривым (эллипсам, параболам, гиперболам, прямым). Эти кривые являются сечениями дифракционных конусов плоскостью и касаются первичного пятна. На эпиграммах дифракционные пятна располагаются по гиперболам, не проходящим через первичный луч.

Для рассмотрения особенностей дифракционной картины в методе Лауэ пользуются геометрической интерпретацией с помощью обратной решетки. Лауэграммы и эпиграммы являются отображением обратной решетки кристалла. Построенная по лауэграмме гномоническая проекция позволяет судить о взаимном расположении в пространстве нормалей к отражающим плоскостям и получить представление о симметрии обратной решетки кристалла. По форме пятен лауэграммы судят о степени совершенства кристалла. Хороший кристалл дает на лауэграмме четкие пятна. Симметрию кристаллов по лауэграмме определяют по взаимному расположению пятен (симметричному расположению атомных плоскостей должно отвечать симметричное расположение отраженных лучей). (См. рис. 3)


Рис. 3 Схема съемки рентгенограмм по методу Лауэ (а – на просвет, б – на отражение, F – фокус рентгеновской трубки, К – диафрагмы, O – образец, Пл - пленка)

Метод вращения монокристалла

Метод вращения является основным при определении атомной структуры кристаллов. Этим методом определяют размеры элементарной ячейки, число атомов или молекул, приходящихся на одну ячейку. По погасаниям отражений находят пространственную группу (с точностью до центра инверсии). Данные по измерению интенсивности дифракционных максимумов используют при вычислениях, связанных с определением атомной структуры. При съемке рентгенограмм методом вращения кристалл вращается или покачивается вокруг определенного кристаллографического направления при облучении его монохроматическим или характеристическим рентгеновским излучением. Первичный пучок вырезается диафрагмой (с двумя круглыми отверстиями) и попадает на кристалл. Кристалл устанавливается на гониометрической головке так, чтобы одно из его важных направлений (типа , , ) было ориентировано вдоль оси вращения гониометрической головки. Гониометрическая головка представляет собой систему двух взаимно перпендикулярных дуг, которая позволяет устанавливать кристалл под нужным углом по отношению к оси вращения и к первичному пучку рентгеновских лучей. Гониометрическая головка приводится в медленное вращение через систему шестерен с помощью мотора. Дифракционная картина регистрируется на фотопленке, расположенной по оси цилиндрической поверхности кассеты определенного диаметра (86,6 или 57,3 мм).

При отсутствии внешней огранки ориентация кристаллов производится методом Лауэ. Для этой цели в камере вращения предусмотрена возможность установки кассеты с плоской пленкой. Дифракционные максимумы на рентгенограмме вращения располагаются вдоль прямых, называемых слоевыми линиями. Максимумы на рентгенограмме располагаются симметрично относительно вертикальной линии, проходящей через первичное пятно. Часто на рентгенограммах вращения наблюдаются непрерывные полосы, проходящие через дифракционные максимумы. Появление этих полос обусловлено присутствием в излучении рентгеновской трубки непрерывного спектра наряду с характеристическим.

При вращении кристалла вокруг главного кристаллографического направления вращается связанная с ним обратная решетка. При пересечении узлами обратной решетки сферы распространения возникают дифракционные лучи, располагающиеся по образующим конусов, оси которых совпадают с осью вращения кристалла. Все узлы обратной решетки, пересекаемые сферой распространения при ее вращении, составляют эффективную, область, т.е. определяют область индексов дифракционных максимумов, возникающих от данного кристалла при его вращении. Для установления атомной структуры вещества необходимо индицирование рентгенограмм вращения. Индицирование обычно проводится графически с использованием представлений обратной решетки. Методом вращения определяют периоды решетки кристалла, которые вместе с определенными методом Лауэ углами позволяют найти объем элементарной ячейки. Используя данные о плотности, химическом составе и объеме элементарной ячейки, находят число атомов в элементарной ячейке.

Метод порошка

При обычном методе исследования поликристаллических материалов тонкий столбик из измельченного порошка или другого мелкозернистого материала освещается узким пучком рентгеновских лучей с определенной длиной волны. Картина дифракции лучей фиксируется на узкую полоску фотопленки, свернутую в виде цилиндра, по оси которого располагается исследуемый образец. Сравнительно реже применяется съемка на плоскую фотографическую пленку.

Принципиальная схема метода дана на рис. 4.

Рис. 4 Принципиальная схема съемки по методу порошка:

1 – диафрагма; 2 - место входа лучей;

3 - образец: 4 - место выхода лучей;

5 - корпус камеры; 6 - (фотопленка)

Когда пучок монохроматических лучей падает на образец, состоящий из множества мелких кристалликов с разнообразной ориентировкой, то в образце всегда найдется известное количество кристалликов, которые будут расположены таким образом, что некоторые группы плоскостей будут образовывать с падающим лучом угол q, удовлетворяющий условиям отражения.

Название аналитического метода отражает его содержание - то есть анализ структуры вещества путем воздействия на него рентгеновским излучением. Принципиальные основы метода связаны с теоретическими положениями, о дифракциях рентгеновских лучей на периодических структурах, которая была открыта М. Лауэ в 1912 году.

Рентгеновские лучи имеют электромагнитную природу. Приборы, регистрирующие кванты рентгеновского излучения, называются рентгеновские дифрактометры. Рентгеновский аппарат имеет пульт управления, ряд измерительных приборов и некоторые вспомогательные устройства.

Основными узлами рентгеновской установки служат (рис. 20):

  • - детектор (счётчик) рентгеновского излучения с соответствующей электронной схемой и регистрирующим устройством;
  • - источник излучения (рентгеновский аппарат с рентгеновской трубкой);
  • - гониометрическое устройство, в котором осуществляется движение образца и счётчика относительно первичного пучка рентгеновских лучей.

Рис. 20. Основные узлы дифрактометра ДРОН: 1 - блок электрического питания; 2 - питающее устройство; 3 - дифрактометрическая стойка; 4 - рентгеновская трубка; 5 - гониометр; 6 - гониометрическая приставка; 7 - блок детектирования; 8 - управляющий комплекс; 9 - блок регистрации; 10 - счетный комплекс; 11 - самопишущее устройство; 12 - печатное устройство; 13 - перфоратор

Детектор регистрирует в каждый момент времени интенсивность рассеянного излучения в узком угловом интервале пучка излучений. Пpи этом может использоваться неподвижный контрольный счётчик.

Источником рентгеновского излучения является рентгеновская трубка (рис. 21), а источником электрической энергии для рентгеновской трубки служит рентгеновский аппарат. В рентгеновской трубке происходит трансформация энергии электрического тока, переносимого разгоняющимися до больших скоростей электронами, в энергию электромагнитного излучения.

Объектами исследования могут быть вещества различных фазовых состояний - твердые, жидкие, газообразные, кристаллические и аморфные. Однако чаще рентгеноструктурные методы применяются для исследования твердых веществ, обладающих кристаллической структурой, т.е. таких веществ, которые характеризуются упорядоченным, закономерным расположением в пространстве входящих в их состав атомов, ионов или комплексов. Основная закономерность строения кристаллических веществ, а именно, повторяемость пространственного расположения частиц по трем (двум) направлениям с определенным периодом - отражает сущность структуры кристаллического вещества, его симметрию и элементарный состав.

Рис. 21.

Каждое вещество обладает только ему присущей кристаллической структурой, определяющей индивидуальность каждого минерального вида или соединения, и обуславливающей его кристаллофизические свойства. Несколько минералов могут иметь одинаковый состав, например, пирит и марказит (FeS), кальцит и арагонит (CaCО 3), но разное относительное расположение в пространстве атомов и ионов приводит к индивидуализации каждого минерального вида. Кристаллическая структура характеризуется системой параллельных атомных плоскостей, более или менее заселенных атомами, расстояния между этими плоскостями называются межплоскостными (d i), а плотность заселения характеризуется относительной интенсивностью отражения рентгеновских лучей (J i). Это позволяет решать обратную задачу - получив d и J качественно и количественно диагностировать минеральную структуру.

При взаимодействии рентгеновских лучей с кристаллом можно рассматривать как их отражение атомными плоскостями и интерференцию отраженных лучей. Отраженные лучи, максимальные по интенсивности, наблюдаются под определенными углами, которые зависят от межплоскостных расстояний отражающей атомной структуры и длин волн первоначального рентгеновского излучения (рис. 22).

Это соотношение выражается уравнением Вульфа-Брегга:

где и - угол (Вульфа-Брегга) максимального отражения рентгеновских лучей атомной плоскостью; d - расстояние между отражающими плоскостями (межплоскостные расстояния); л- целое число (порядок отражения); d -длина волны падающего рентгеновского излучения. Это уравнение позволяет, зная величину л и экспериментально измеренные углы и, определять межплоскостные расстояния d.

Рис. 22.

Использование этой формулы позволяет, с учетом пространственной ориентации атомных плоскостей (h, k, ?) в минералах разных сингоний, определять положение узлов атомной (ионной) решетки с указанием параметров элементарной ячейки (а, в, c), где а, в, c - расстояния между узлами в атомной плоскости и d - расстояние между плоскостями, в соответствии с формулой (для кубической сингонии):

Для получения рентгенограмм применяют следующие методы:

  • - метод Лауэ (неподвижного кристалла, облучаемого немонохроматическим излучением);
  • - метод вращения кристалла;
  • - метод порошкограмм (облучение спрессованного порошка монохроматическим излучением).

При исследовании кристаллической структуры вещества методом Лауэ получают дифракционную картину монокристалла в белом (широкого спектра) рентгеновском излучении. Монокристалл помещают под поток рентгеновских лучей, лучи отражаются от атомных плоскостей и попадают на рентгеновскую пленку (рис. 23). Рассеянные лучи дают на пленке точечные рефлексы, каждому из которых соответствует своя длина волны l из полихроматического спектра. Симметрия в расположении пятен отражает симметрию кристалла (рис. 24).

Рис. 23. Схема получения лауэграммы (а); вид дифракционной картины для кристалла (б): эллипсы, проведенные через рефлексы, пересекаются в точке, соответствующей оси симметрии 4-го порядка (hppt://s-d-p.narod.ru)

Рис. 24.

Через рефлексы можно провести эллипсы, точкой пересечения которых является ось симметрии. Дифракционную картину от монокристалла можно получить методом вращения его вокруг оси, перпендикулярной к направлению падающего монохроматического пучка и параллельной кристаллографической оси, имеющей, как правило, небольшие индексы.

Дифракционная картина будет иметь простой вид только в том случае, когда ось вращения параллельна какому-либо узловому ряду решетки. Если пленка свернута в виде цилиндра, ось которого совпадает с осью вращения кристалла, а пучок направлен перпендикулярно этой оси (рис. 25, а), то плоскости, параллельные оси вращения, дадут дифракционную картину в виде точек, расположенных вдоль прямой, проходящей через центр пленки и называемой нулевой слоевой линией первого рода. Плоскости, ориентированные наклонно по отношению к оси вращения, дадут рефлексы, образующие слоевые линии, находящиеся выше и ниже нулевой (рис. 25, б). Из расстояния между слоевыми линиями первого рода можно рассчитать кратчайшее расстояние между атомами, расположенными вдоль кристаллографического направления, параллельного оси вращения кристалла.

Рис. 25. Схема рентгеновской съёмки по методу вращения (hppt://bestreferat.ru): 1 - первичный пучок; 2 - образец (вращается по стрелке); 3 - фотоплёнка цилиндрической формы; б - типичная рентгенограмма вращения

Кристаллическая структура вещества может быть определена и по порошковым дифракционным картинам, получаемым от поликристаллических объектов. Это способ рентгеноструктурного изучения минералов называется метод дебаеграмм. Он дает менее полную структурную характеристику минерала, но при отсутствии крупных и хорошего качества монокристаллов порошковые методы очень полезны. Для исследования этим методом берут тонкий порошок измельченных кристаллов, из которого изготовляют спрессованный столбик, или спрессованные пластинки. Основы этого метода связаны с положением о том, что поликристаллический объект содержит множество разноориентированных кристаллов и необходимо создать условия для ориентации возможно большей их части в положении, удовлетворяющей уравнению Вульфа-Брегга, т.е. получить максимальные углы и интенсивности отражения (рис. 26, а). Снимок отраженных лучей носит название дебаеграммы (рис. 26, б). Анализ результатов сводится к сравнению дебаеграммы неизвестного минерала с эталонными снимками стандартов.


Рис. 26. Схема рентгеновской съёмки по методу порошка (hppt://roman.by): 1 - первичный пучок; 2 - порошковый или поликристаллический образец; 3 - фотоплёнка, свёрнутая по окружности; 4 - дифракционные конусы; 5 - "дуги" на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами; б - типичная порошковая рентгенограмма (дебаеграмма)

Вышерассмотренные методы рентгеновской съемки характеризуются регистрацией дифрагированных рентгеновских лучей на фотопленке. В приборах, которые называются дифрактометры, лучи фиксируются счетчиками, с которыми связано электронное регистрирующее устройство. Результатом исследования вещества на дифрактометре является дифрактограмма (рис. 27), на которой положение пиков по горизонтали указывает на величину угла, а их высота характеризует интенсивность. В России выпускаются дифрактометры серии ДРОН.

Рентгеноструктурный анализ, выполненный на совершенном оборудовании и при использовании качественного справочного материала для идентификации параметров кристаллической решетки позволяет:

  • - определить минеральный вид;
  • - определить минеральную разновидность; (тип кристаллической решетки);
  • - выявить структурные разновидности (подтипы);
  • - установить наличие структурных типоморфных особенностей;
  • - установить и произвести количественную оценку элементов-примесей;
  • - выявить степень упорядоченности структуры и ее совершенство.

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П. Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³до10 5 эв.

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

1) Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

2) Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис.). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис.– Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис),так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис– схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис.). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяет расшифровывать самые простые структуры.

В методе вращения (рис.) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристаллравномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии.

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания , который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра . Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Метод рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

В природе встречается примерно 10 12 различных белков, выполняющих самые разнообразные функции. Это и белки-ферменты, катализирующие биохимические процессы в живой клетке; и белки-переносчики, позволяющие другим молекулам проходить через ядерные или клеточные мембраны или перемещаться между клетками всего организма; и иммуноглобулярные белки, отличающиеся высокой специфичностью взаимодействия с антигенами, что приводит к активации сигнальных путей, обеспечивающих иммунный ответ клеток. Это лишь несколько примеров уникальных свойств белковых молекул. По образному выражению Фрэнсиса Крика, белки важны прежде всего потому, что они могут выполнять самые разнообразные функции, причем с необыкновенной легкостью и изяществом.

При всем своем структурном и функциональном многообразии все природные белки построены из 20 аминокислот, соединенных в соответствии с кодом белкового синтеза. В зависимости от последовательности аминокислотных остатков в полипептидной цепи формируется определенная стабильная трехмерная структура белка, определяющая его структурные и функциональные свойства. Например, для каждого фермента характерна вполне определенная конформация активного центра, обеспечивающего специфическое взаимодействие с молекулами субстратов и осуществляющего каталитический акт. Причем для эффективного образования фермент-субстратного комплекса большое значение имеет не только геометрическое соответствие (комплементарность) молекул фермента и субстрата, но и образование водородных связей, электростатические и гидрофобные взаимодействия между атомами активного центра фермента и молекулы субстрата. Таким образом, любая белковая молекула характеризуется уникальностью структуры, которая определяет уникальность ее функции.

Выяснение пространственной организации белков – одно из основных направлений современной биохимии. Во многих случаях знание структуры белка и его комплекса с ингибиторами является решающим фактором при создании лекарственных препаратов.

Одним из важнейших экспериментальных методов, позволяющих с атомарной точностью узнать, что представляет собой трехмерная структура белка, т.е. определить пространственные координаты всех атомов исследуемого объекта, является рентгеноструктурный, или кристаллографический, анализ. Зная положение каждого атома, можно вычислить межатомные расстояния, валентные углы, углы вращения вокруг связей, распределение поверхностного заряда и другие детали молекулярной геометрии. Эти данные нужны химикам, биохимикам и биологам, изучающим зависимости между структурными характеристиками и функциональными свойствами, а также специалистам, занимающимся изучением электронной структуры молекул и молекулярных взаимодействий. Особое место рентгеноструктурного анализа среди других экспериментальных методов отражает тот факт, что с момента открытия рентгеновских лучей в 1901 г. по настоящее время работы в этой области 12 раз отмечались Нобелевскими премиями.

Применение рентгеноструктурного анализа для исследования сложноорганизованных биологических объектов началось после 1953 г., когда сотрудник Кавендишской лаборатории Кембриджского университета Макс Перутц нашел способ определения структуры крупных молекул, таких как миоглобин и гемоглобин. С тех пор рентгеноструктурный анализ молекул белка помогает нам понять химию биологических реакций. На сегодняшний день известны структуры около 15 тыс. белков и их комплексов с биологически важными молекулами.

Рентгеновские лучи являются электромагнитными волнами с длинами в диапазоне 0,01–10 нм. С коротковолновой стороны они соседствуют с -лучами (длины волн менее 0,1 нм), с длинноволновой – с ультрафиолетовыми (длины волн примерно 10–380 нм).

Для проведения рентгеновского эксперимента необходимо монохроматическое рентгеновское излучение (т.е. строго определенной длины волны). Для этой цели используются различные фильтры и монохроматоры.

Обычно, когда человек слышит о рентгеновском исследовании, он вспоминает рентгеновский кабинет в поликлинике. На самом деле рентгеноструктурный анализ не имеет ничего общего с медицинскими исследованиями. Медицинская рентгеноскопия основана на различии в степени поглощения рентгеновских лучей разными тканями, а рентгеновская кристаллография – на рассеянии рентгеновских лучей электронами атомов. Если в медицине мы получаем рентгеновский снимок исследуемого объекта, то в рентгеновской кристаллографии снимки не содержат никакого изображения чего бы то ни было.

Как же ставится рентгеновский эксперимент? Принципиальная схема проста (рис. 1): исследуемый объект помещают в пучок рентгеновских лучей и измеряют интенсивность рассеянного в различных направлениях излучения. Самый простой способ – поместить на пути пучка лучей фотопленку и по степени потемнения пятна после проявления судить об интенсивности рассеяния в этом направлении. Конечно, на сегодняшний день существуют и более совершенные методы, но сейчас это не важно. В данном случае важно то, что мы смотрим не на интенсивность лучей, прошедших сквозь объект, а на интенсивность лучей, возникших там, где их вроде бы и не должно было быть.

Рис. 1. Схема рентгеновского эксперимента

Итак, на входе мы имеем неизвестный объект, на выходе – набор интенсивностей рассеянных в различных направлениях лучей, или дифракционную картину. Теперь необходимо связать полученную в эксперименте информацию с атомной структурой исследуемого объекта. Перечислим основные положения, на которых строится простейшая математическая модель рассеяния рентгеновских лучей:

1) пучок рентгеновских лучей является плоской монохроматической электромагнитной волной;
2) под воздействием этой электромагнитной волны каждый электрон приходит в движение, которое может быть описано уравнениями для свободных зарядов;
3) движущийся электрон является, в свою очередь, источником новой рассеянной сферической электромагнитной волны, распространяющейся во всех направлениях;
4) эти новые волны суммируются и определяют интенсивность излучения в интересующем нас направлении.

Такая модель называется кинематической теорией рассеяния . Ее основной недочет заключается в том, что на электрон действует не только первичный пучок, но и рассеянные волны, и их влияние может изменять характер его движения. Попытка учесть эти поправки делается в более изощренной динамической теории рассеяния, однако для практических приложений более простая кинематическая теория рассеяния оказывается, как правило, вполне достаточной.

Метод рентгеноструктурного анализа основан на дифракции рентгеновских лучей на кристаллической решетке и поэтому применим только к веществам в кристаллическом состоянии. Это связано с тем, что для регистрации дифракционной картины рассеяния необходимо иметь достаточное количество рассеивающих электронов. Но если образец состоит из большого числа произвольно ориентированных идентичных молекул (раствор), то картина рассеяния будет определяться какими-то усредненными по всевозможным ориентациям характеристиками и вряд ли позволит получить детальную информацию об атомной структуре. Другое дело, если большое количество одинаковых молекул ориентированы одинаково. Такую возможность дают нам кристаллические образцы.

Говоря простыми словами (и не вдаваясь в сложные математические формулировки), кристалл – это такой образец исследуемого вещества, в котором много (~10 12) идентичных молекул находятся в одинаковой ориентации и их центры образуют правильную трехмерную решетку.

Основная особенность структуры каждого кристалла состоит в том, что он построен из регулярно расположенных в пространстве отдельных атомов или групп атомов. Если каждую повторяющуюся структурную единицу заменить точкой, или узлом, то получится трехмерная кристаллическая решетка (рис. 2). Решетку можно представить себе как систему одинаковых параллелепипедов. Каждый такой параллелепипед носит название «элементарная ячейка кристалла» и описывается шестью параметрами: длинами ребер (a, b, c) и углами между ними (, , ).

Одна из основных претензий к методу рентгеноструктурного анализа с самого начала исследования структур белков – это то, что в жизни белки находятся в растворе, а при исследовании мы их кристаллизуем. Возникает логичный вопрос: не происходит ли принципиальных искажений структуры молекул белка при кристаллизации? Принято считать, что сильных искажений все-таки не происходит. Доводы в пользу такой позиции следующие.

Во-первых, ряд белков сохраняют ферментативную активность и в закристаллизованном состоянии, т.е. структура изменяется не настолько, чтобы белок стал «неработоспособен». Другое соображение: в кристаллах биомакромолекул значительный объем (от 30 до 80%) занимает растворитель, т.е. упаковка молекул белка в кристалле не плотная и вряд ли вызывает существенные искажения. Некоторые искажения в свободных петлях возможны, но структура активного центра сохраняется. Еще одно подтверждение: альтернативное определение структур некоторых белков методом двумерного ядерного магнитного резонанса не дало существенных расхождений со структурами, расшифрованными рентгеновскими методами.

Монохроматическое рентгеновское излучение, проходя через кристалл, рассеивается в основном на электронных оболочках периодически повторяющихся атомов и образует дифракционную картину, или рентгенограмму (рис. 3). Поэтому экспериментальные рентгеновские данные позволяют судить об особенностях расположения электронов в элементарных кристаллических ячейках. Электрон обладает волновыми свойствами, и его положение в пространстве характеризуется не точными координатами, а функцией распределения электронной плотности (r), которая дает среднее по времени число электронов, приходящееся на 1 3 (кубический ангстрем). На основании этой функции можно судить о расположении атомов в элементарных ячейках, т.к. каждому атому соответствует сгусток электронной плотности определенной величины. Таким образом, при обработке данных рентгеновского эксперимента нужно решить две задачи.

Рис. 3. В дифракционной картине заключена вся информация о структуре белка

1. Из данных рентгенограммы получить карту распределения электронной плотности (r) в кристалле исследуемого объекта. На этом этапе возникает принципиальная трудность (о которой речь пойдет ниже), связанная с невозможностью получить из эксперимента всю информацию, необходимую для восстановления исследуемой структуры. Для получения недостающей части информации используют различные обходные пути. Но универсального пути нет, и в каждом случае исследователь выбирает наиболее подходящий, основываясь на своем опыте и интуиции.

2. На основании карты распределения электронной плотности (r) определить положения атомов в исследуемом объекте. Для решения этой задачи структура многократно подвергается программной обработке и ручной доводке для достижения наилучшего совпадения с электронной плотностью.

Основные этапы определения структуры белка

Выделение, очистка

С этого этапа начинаются практически все экспериментальные исследования белковых структур. Для получения нужного белка используют различные биохимические методы. Последовательность операций по выделению белков обычно сводится к измельчению биологического материала (гомогенизация), извлечению из него белков, а точнее – переводу белков в растворенное состояние (экстракция) и выделению исследуемого белка из смеси других белков, т.е. очистке и получению индивидуального белка. На этом этапе наибольшая сложность заключается в наработке достаточного для эксперимента количества чистого белка.

Кристаллизация

Получение кристаллов, пригодных для рентгеноструктурного анализа, зачастую процесс трудоемкий и далеко не тривиальный, особенно для сложных соединений, таких как белки и нуклеиновые кислоты. Наличие пересыщенного раствора – необходимое условие кристаллизации. Для получения такого раствора используют различные способы. Один из них заключается в постепенном удалении растворителя обычным испарением, что приводит к росту концентрации вещества в растворе, который в какой-то момент становится пересыщенным. Другой способ связан с использованием зависимости растворимости от температуры. Например, если растворимость с увеличением температуры повышается, можно приготовить насыщенный раствор при более высокой температуре, а затем медленно охладить его. Благодаря понижению растворимости в процессе охлаждения получается пересыщенный раствор. Третий способ связан с введением в раствор какого-либо вещества, вызывающего понижение растворимости. В качестве таких веществ используют либо соли, либо органические растворители. Кроме того, растворимость белков и нуклеиновых кислот сильно зависит от pH раствора, это тоже можно использовать для получения пересыщенных растворов.

На практике все намного сложнее. До сих пор не существует универсальных способов подбора оптимальных условий кристаллизации. Для каждого конкретного белка исследователь ищет эти условия, меняя тип буфера, значения pH, температуры, концентрации самого белка, осаждающей соли и т.д. В этой работе важно найти такие условия, при которых получится именно кристалл, а не выпадет соль. Поэтому выращивание биологических кристаллов не только научное направление, но и искусство. Иногда, чтобы заставить белок кристаллизоваться, его центрифугируют или даже отправляют в невесомость.

Выбор кристаллов для рентгеновского эксперимента проводят с помощью микроскопа. Для этой цели особенно полезен поляризационный микроскоп, позволяющий с помощью поляризационного света установить наличие дефектов в кристалле. Оптимальными считаются монокристаллы с размером каждой из сторон 0,2–0,6 мм. Кристаллы должны быть без дефектов и, по возможности, с хорошей огранкой. Наличие дефектов приводит к ошибкам при экспериментальном измерении дифракционной картины и, как следствие, к неточности (а часто и к невозможности) расшифровки кристаллической структуры. При повышении сложности исследуемого объекта требования к качеству кристаллов повышаются. Как выглядят кристаллы белков, показано на рис. 4.

Рис. 4. Кристаллы белков: а – кристаллы зеленого флуоресцентного белка zGFP506; б – кристаллы мутанта белка zGFP506 с аминокислотной заменой N66D

К сожалению, далеко не всегда удается получить кристалл изучаемого белка, поэтому этот этап является главным ограничением метода рентгеноструктурного анализа белков.

Рентгеновский эксперимент, обработка результатов

В качестве источника рентгеновских лучей в настоящее время стараются использовать синхротронный ускоритель. Это довольно дорогое сооружение. Лабораторные рентгеновские установки тоже используются, но синхротронное излучение имеет существенные преимущества.

Во-первых, это мощность пучка. Здесь два плюса. Первый понятен – сокращается время эксперимента. Второй – биологические кристаллы имеют тенденцию разрушаться под действием рентгеновского излучения. Процесс разрушения занимает определенное время, и если пучок мощный, то можно успеть зарегистрировать нужную картину, пока кристалл не разрушился.

Во-вторых, это возможность получить желаемую длину волны. Рентгеновские трубки дают мощный пучок только фиксированной длины волны (обычно около 1,57), в то время как при проведении эксперимента зачастую необходимо иметь возможность выбора длины волны. Это позволяет сделать синхротрон.

Обработка результатов рентгеновского эксперимента базируется на мощном математическом аппарате, который здесь мы рассматривать не будем. Когда монохроматический рентгеновский луч падает на определенным образом ориентированный кристалл, то рассеяние происходит в дискретных направлениях, определяемых кристаллической решеткой. Дифракционная картина, возникающая на пленке детектора (рис. 3), представляет собой набор пятен, или рефлексов. Измерив интенсивность рефлексов, можно получить значения модулей т.н. структурных факторов (комплексных чисел), описывающих распределение электронной плотности в кристалле (r). Но чтобы однозначно определить (r), нужно знать еще и соответствующие значения фаз этих факторов, информация о которых не содержится в дифракционной картине. Если для какого-либо кристалла фазы определены, то расчет положений атомов этого кристалла не составляет принципиальных трудностей.

Таким образом, центральная проблема метода рентгеноструктурного анализа, называемая фазовой проблемой , заключается в невозможности получения всех необходимых для расчета данных непосредственно из эксперимента.

Общего решения фазовой проблемы на сегодня не существует. Каждый случай требует специального подхода. Здесь важно понимать, что новая информация не берется ниоткуда. Для того чтобы получить значения фаз, мы должны либо сделать какие-то новые предположения о структуре и особенностях объекта, либо провести новые эксперименты. Ниже приведены основные подходы к решению «фазовой проблемы», применяемые в белковой кристаллографии.

Изоморфное замещение

Можно попытаться внедрить в молекулы кристалла некую метку – один или несколько тяжелых атомов (например, ионы тяжелых металлов), которые могут быть либо добавлены к нативной структуре, либо могут замещать часть ее атомов (рис. 5).

Под изоморфным внедрением тяжелых атомов подразумевается, что они присоединяются к каждому экземпляру молекулы в одном и том же месте, и структура молекулы белка при этом не изменяется. Затем, проведя дополнительно рентгеновский эксперимент с таким модифицированным соединением и определив изменения интенсивностей рефлексов по сравнению с нативным белком, можно получить дополнительную информацию о значениях фаз. Трудность этого метода заключается в том, что не всегда удается получить хорошее изоморфное производное, а также в необходимости проведения дополнительного рентгеновского эксперимента.

Метод изоморфного замещения является основным методом решения фазовой проблемы при определении структуры биологических макромолекул. Сам этот метод возник достаточно давно, но именно при работе с белками он приобрел исключительно важную роль. Причин этому две:

1) долгое время он являлся единственным методом, позволяющим решать фазовую проблему для белков;

2) именно для белков удается «достаточно просто» получать изоморфные производные. Последнее связано с тем, что кристаллы белка довольно рыхлые – в них от 30 до 70% объема занято растворителем, т.е. в кристаллах есть «пустоты», куда могут поместиться дополнительные атомы.

Использование эффекта аномального рассеяния

Этот метод основан на варьировании длины волны падающего на кристалл рентгеновского излучения вблизи значений, при которых наблюдается эффект резонанса (и соответствующее аномальное рассеяние) для нескольких «специальных» атомов, содержащихся в структуре макромолекулы. Если аномально рассеивающих атомов в белке нет, иногда можно попытаться присоединить их химическим путем. Дифракционные картины получают для нескольких значений длины волны падающего луча и на основании анализа разностей интенсивностей соответствующих рефлексов оценивают значения фаз.

Успех метода аномального рассеяния, как и изоморфного замещения, во многом зависит от возможности экспериментального получения производных с требуемыми свойствами.

Упомянутые два способа отвечают попытке решить фазовую проблему за счет дополнительной информации, получаемой из дополнительных экспериментов. Следующий способ применяют в ситуации, когда нам известна структура близкого (гомологичного) белка.

Метод молекулярного замещения

В биологии распространена ситуация, когда существуют ряды объектов, похожих друг на друга, т.е. имеющих структурную гомологию. Такой гомологией могут обладать, например, белки одного типа, выделенные из разных организмов. В этом случае можно надеяться, что фазы структурных факторов, рассчитанные по известной атомной модели гомологичного белка, будут достаточно хорошим начальным приближением к значениям неизвестных фаз, отвечающих исследуемому объекту. Комбинируя их далее с измеренными в эксперименте модулями структурных факторов для исследуемого объекта, мы можем получить хорошее приближение к искомому распределению электронной плотности.

Однако для того чтобы надеяться на успех на этом пути, надо, как минимум, для начала «разместить» известный гомологичный объект на том же месте и в той же ориентации, что и исследуемый белок. Процедуру создания такого «компьютерного гибрида», в котором внутри элементарной ячейки кристалла одного белка размещается молекула другого, называют методом молекулярного замещения. Судить о том, насколько полученное размещение близко к действительности, можно, сравнивая рассчитанные по модели модули структурных факторов с величинами, полученными в эксперименте. Разумеется, такое замещение – всего лишь умозрительная процедура, и никакого химического замещения не происходит.

«Прямые» методы

В отличие от предыдущих подходов, эти методы опираются не на дополнительный эксперимент или информацию о структуре гомологичного объекта, а на почти философскую идею об атомности изучаемого объекта. Под «прямыми» методами в кристаллографии понимаются стратегии определения структур, использующие в качестве стартовой информации только набор интенсивностей рефлексов, полученный в рентгеновском эксперименте. Для определения фаз структурных факторов в них используют вероятностный подход. «Прямые» методы более объективны в том смысле, что они зависят только от применения математических соотношений.

На основе «прямых» методов определяют структуры большинства низкомолекулярных соединений. Эти методы не требуют ни дополнительных экспериментов, ни тонкой биохимической работы по получению изоморфных производных, ни наличия известных гомологичных структур, но к сожалению, пока не применимы к структурам белков из-за принципиальных ограничений на количество атомов исследуемой структуры.

Если известны и модуль, и фаза структурных факторов, то мы можем восстановить распределение (r), рассчитав обратное преобразование Фурье. Это не сложная с современной точки зрения вычислительная задача, и этот шаг выделяется потому, что он подводит итог важного этапа работ. Мы, наконец, получаем возможность «взглянуть» на интересующий нас объект. И по тому, насколько «четким» получилось изображение, – судить об успешности всех предыдущих этапов работы. А в случае неудачи – повторить все сначала.

Следующий этап заключается в построении приближенной атомной модели по рассчитанным картам распределения электронной плотности. Эта работа требует максимального использования интеллекта человека и осуществляется квалифицированными специалистами.

С помощью специальных компьютерных программ, исследователь вручную вписывает атомы белковой структуры в полученную на предыдущем этапе карту электронной плотности (рис. 6).

Рассмотрим еще один метод анализа твердых тел, также связанный с квантовым излучением, но лежащим в более коротковолновой части спектра. Рентгеноструктурный анализ (РСА) является методом исследования строения тел, использующим явление дифракции рентгеновских лучей. Этот метод предусматривает изучение структуры вещества на основании оценки пространственного распределения интенсивности рассеянного рентгеновского излучения.

Поскольку длина волны рентгеновского излучения сопоставима с размерами атома и постоянной решетки кристаллического тела, при облучении кристалла рентгеновским излучением будет наблюдаться дифракционная картина, которая зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны порядка единиц ангстрем.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т. д. Это основной метод определения структуры кристаллов. При их исследовании РСА дает наиболее достоверную информацию. При этом анализу могут быть подвергнуты не только регулярные монокристалличе- ские объекты, но и менее упорядоченные структуры, такие как жидкости, аморфные тела, жидкие кристаллы, поликристаллы и др.

На основе многочисленных уже расшифрованных атомных структур решается и обратная задача: по рентгенограмме поликристаллического вещества, например, легированной стали, сплава, руды, лунного грунта, устанавливается кристаллическое строение этого вещества, т. е. выполняется фазовый анализ.

В ходе РСА исследуемый образец помещают на пуги рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе анализируют

Рис. 15.35.

дифракционную картину и расчетным путем устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины. На рисунке 15.35 приведена фотография аналитической установки, реализующей способ РСА.

Рентгеноструктурный анализ кристаллических веществ выполняется в два этапа. Первый - это определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путем анализа геометрии расположения дифракционных максимумов.

Второй этап - расчет электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Такие данные получают, измеряя интенсивности дифракционных максимумов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. При любом методе имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца относительно оси пучка и приемник рассеянного образцом излучения. Приемником служит фотопленка, или ионизационные либо сцинтилляци- онные счетчики рентгеновских квантов, или другое устройство фиксации информации. Метод регистрации с помощью счетчиков (дифрактомегри- ческий) обеспечивает наиболее высокую точность определения интенсивности регистрируемого излучения.

Основными методами рентгеновской съемки кристаллов являются:

  • метод Лауэ;
  • метод порошка (метод дебаеграмм);
  • метод вращения и его разновидность - метод качания.

При съемке методом Лауэ на монокристаллический образец падает пучок немонохроматического излучения (рис. 15.36, а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа-Брэгга. Они образуют дифракционные пятна на лауэграмме (рис. 15.36, б), которые располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка. Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла.


Рис. 15.36. Рентгеновская съемка по методу Лауэ: а - схема облучения: б - типичная лауэграмма; / - пучок рентгеновских лучей; 2 - коллиматор; 3 - образец; 4 - дифрагированные лучи; 5 - плоская фотопленка

По характеру пятен на лауэграммах можно выявить внутренние напряжения и другие дефекты кристаллической структуры. Индицирование же отдельных пятен затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество монокристаллов при выборе образца для более полного структурного исследования.

При использовании метода порошка (рис. 15.37, а ), так же как и в описываемых далее методах рентгеновской съемки, применяется монохроматическое излучение. Переменным параметром является угол падения 0, так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.


Рис. 15.37. Рентгеновская съемка методом порошка: а - схема метода; б - типичные порошковые рентгенограммы (дебаеграммы); 1 - первичный пучок; 2- порошковый или поликристаллический образец; 3 - дифракционные конусы

Лучи от всех кристалликов, у которых плоскости с некоторым межплоскостным расстоянием d hkj находятся в «отражающем положении», т. е. удовлетворяют условию Вульфа-Брэгга, образуют вокруг первичного луча конус с углом растра 40°.

Каждому dukt соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотопленки, свернутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 15.37, б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

В современных приборах вместо свернутой по цилиндрической поверхности фотопленки используют датчик с малой апертурой и площадью приемного окна, который дискретно перемещают по цилиндрической поверхности, снимая дифрактограмму.

Метод порошка наиболее прост и удобен с точки зрения техники эксперимента, однако единственная поставляемая им информация - выбор межплоскостных расстояний - позволяет расшифровывать только самые простые структуры.

В методе вращения переменным параметром является угол 0. Съемка производится на цилиндрическую фотопленку. В течение всего времени экспозиции кристалл равномерно вращается вокруг оси, совпадающей с каким-либо важным кристаллографическим направлением и осью образуемого пленкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с пленкой дают линии, состоящие из пятен (слоевыелинии).

Метод вращения дает больше информации, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решетки в направлении оси вращения кристалла.

В этом методе упрощается идентификация пятен рентгенограммы. Так, если кристалл вращается вокруг оси решетки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (А, к , О), на соседних с ней слоевых линиях - соответственно (А, к, I) и (А, А, I) и т. д. Однако и метод вращения не предоставляет всей возможной информации, поскольку неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

При исследовании методом качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Эго облегчает индицирование пятен, так как позволяет получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникло каждое дифракционное пятно.

Еще более полную информацию дают методы рентгеногониометра. Рентгеновский гониометр - это прибор, с помощью которого одновременно регистрируют направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции.

Один из таких методов - метод Вайссенберга - является дальнейшим развитием метода вращения. В отличие от последнего в рентгеногониоме- тре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса «разворачиваются» на всю площадь фотопленки путем ее возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вайссенбергограммы.

Существуют и другие методы съемки, в которых применяется одновременное синхронное движение образца и фотопленки. Важнейшими из них являются метод фотографирования обратной решетки и прецессионный метод Бюргера. При этом используется фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счетчиков рентгеновских квантов.

Рентгеноструктурный анализ дает возможность устанавливать структуру кристаллических веществ, в том числе таких сложных, как биологические объекты, координационные соединения и т. д. Полное структурное исследование кристалла часто позволяет решать и чисто химические задачи, например, установление или уточнение химической формулы, типа связи, молекулярной массы при известной плотности или плотности при известной молекулярной массе, симметрии и конфигурации молекул и молекулярных ионов.

Применяется РСА и для изучения кристаллического состояния полимеров, аморфных и жидких тел. Рентгенограммы таких образцов содержат несколько размытых дифракционных колец, интенсивность которых резко снижается с увеличением угла падения 0. По ширине, форме и интенсивности этих колец делают заключение об особенностях ближнего порядка в жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая стала отдельной отраслью науки. Рентгенография включает наряду с полным или частичным РСА также и другие приемы использования рентгеновских лучей: рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и др.

Определение структуры чистых металлов и многих сплавов, основанное на РСА (кристаллохимия сплавов) - один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надежно установленной, если данные сплавы не исследованы методами РСА. Благодаря РСА оказалось возможным глубокое изучение структурных изменений, протекающих в металлах и сплавах при их пластической и термической обработке.

Методу РСА свойственны и ограничения. Для проведения полного РСА необходимо, чтобы вещество хорошо кристаллизовалось с образованием устойчивых кристаллов. Иногда необходимо проводить исследования при высоких или низких температурах. Это сильно затрудняет проведение эксперимента.

Полное исследование очень трудоемко, длительно и сопряжено с большим объемом вычислительной работы. Для установления атомной структуры средней сложности (-50-100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ПК, - иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч).

В связи с этим для решения задач РСА были разработаны и получили широкое распространение специализированные пакеты прикладных программ, позволяющие автоматизировать процесс измерений и интрепрета- ции их результатов. Однако даже с привлечением вычислительной техники определение структуры остается сложным.

Применение в дифрактометре нескольких счетчиков, которые параллельно регистрируют отражения, позволяет сократить время эксперимента. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности, позволяя определять структуру молекул и общий характер взаимодействия молекул в кристалле.

Исследование методом РСА не всегда дает возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной. Серьезным ограничением метода является также трудность определения положений легких атомов, и особенно атомов водорода.