» » Нанотехнология и наноматериалы в радиотехнике. Нанотехнологии и области их применения

Нанотехнология и наноматериалы в радиотехнике. Нанотехнологии и области их применения

Введение.

Ряд нанообъектов известен и применяется довольно давно. К ним относятся: коллоиды, мелкодисперсные порошки, тонкие плёнки.

1) Р. Фейнман – нобелевский лауреат. «Насколько я вижу, принципы физики не запрещают манипулировать отдельными атомами» 1959г.

2) 1996г. Р.Янг предложил идею пьезодвигателей, которые сейчас обеспечивают прецизионное перемещение инструментов нанотехнологий с точносьтю 0.01 Å. Å=

3) В 1974 г. Норио Танигути впервые употребил термин «нанотехнология»

4) В 1982-1985 гг. немецкий профессор Г. Гляйтер предложил концепцию наноструктуры твердого тела.

5) В 1985г. коллектив ученых Роберт Керл, Харолд Крото, Ричард Смолли открыл фуллерены и создал теорию УНТ, которые экспериментально были получены в 1991 г.

6) В 1982 г. Г. Бининг и Г. Рорер создали первый сканирующий туннельный микроскоп (СТМ).

7) В 1986 г. появился сканирующий атомно-силовой микроскоп.

8) В 1987-1988 г. Был пордемонстрирован принцип действия первой нанотехнологической установки, которая позволяла манипулировать отдельными атомами. (В СССР)

Э.Дрекслер – обощил все знания о нанотехнологиях, определил концепцию самовоспоризводящихся молекулярных роботов, которые должны были производить сборку и декомпозицию, запись информации в память на атомарном уровне, сохранение программ самовоспроизведение и реализацию их.

9) В 1990г. С помощью СТМ фирмой IBM были нарисованы 3 буквы. Они были нарисованы атомами Xe(35 атомов) на плоской грани кристалла никеля.

К настоящему времени уже отрабатываются технологические приёмы т.н. запряжения атомов на поверхностях и образование различных комбинаций атомов в объеме – при комнатной температуре.

Наиболее реальным выходом нанотехнологий является то, что называется самосборкой атомарных структур. Задача современной нанотехнологии – найти природные законы, которые обечпечивали бы сборку атомарных структур.

Понятие нанообъекта, наноматериала, нанотехнологии.

Нано – «». Таким образом в сферу деятельности нанотехнологий попадают объекты, которые имеют хотя бы в одном измерении размер, измеряемый в нм. Реально диапазон рассматриваемых объектов гораздо шире – от размера отдельного атома, до конгломераотв (органических молекул, которые содержат свыше 10 9 атомов имеющих размеры более 1 мкм в 1,2ух или 3ех измерениях. Принципиально важно, что эти объекты состоят не из б.б числа атомов, что обуславливает проявление дискретной атомно-молекулярной структуры вещества или квантовых закономерностей его поведения.

1) Определение нанообъекта. Любой физический объект с нангометровыми размерами в 1х,2х,3х координатах прострнства (скоро возможно и во времени).

2) Опредление нанообъекта. Нанообъектом называют любой амтериальный объект, у которого количество приповерхностных атомов сравнимо или превышает количесто атомов, находящихся в объеме.

3) Определение нанообъекта. Нанообъект – это объкет с размерами в 1 или более координатах, сравнимый с длиной волны де Бройля для электрон. (В 1924 г. физик де Бройль сказал, что корпускулярно-волновой дуализм для фотонов присущ любой частице в природе). , где h – постоянная Планка, p – импульс. Электрон – обладает самой большой волной де Бройля.

4) Опредление нанообъека. Называют объекты, которые в своем измерении меньше критического размера события. (размер соизмерений с поляризационным радиусом того или иного критического явления, длиной свободного пробега электронов, размер магнитного домена, размер зарождения твердой фазы).

5) Определение нанообъекта. Нанообъектом называют объект с размером менее 100 нм хотя бы в 1 из 3х пространственных измерений. 100нм – длина волны де Бройля для электрона в п/п.

Наноматериалами называют как сами нанообъекты (еси они служат для изготовления устройств и приборов различного технического назначения, как и материалы в которых нанообъекты используются для формирования у этих материалов определенных свойств или наноструктурированные материалы. С понятием «наноматериалы» тесно связано понятие «нанотехнологии».

Под термином «технология» понимают три поятия:

1) технологический процесс
2) комплект технологической документации

3) Научную дисциплину, изучающую закономерность сопровождающую процессы обработки и изделия.

Нанотехнология – это научная дисциплина изучающая закономерности в получении обработки и применения наноматериалов.

Физические причины специфики наночастиц и наноматериалов.

1) В нанообъектах количество приповерхностных или зернограничных атомов становится сравнимым с количеством атомов. Находящихся в объеме.

2) Атомы, располагающиеся на поверхности, также в узлах уступов и ступенях имеют малое число завершенных связей. В отличие от атомов, находящихся в объеме твердого тела. Это приводит к разному увеличению химической, каталитической активности нанообъектов и моноструктурированых материалов. Кроме того миграция с углеродных атомов происходит вдоль поверхности гораздо быстрее, т.е. увеличение скорости диффузионной миграции, рекристаллизации, а также сорбционная ёмкость и т.д.

3) Для нанообъектов силы изображения линейного и поверхностного натяжения проявляются гораздо сильнее, чем для нанообъектов, т.к. при удалении от поверхности в объеме твердого тела эти силы значительно ослабевают. Величина этих сил приводит к очистке объема нанообъекта сил дефектов кристаллической структуры. Нанообъект имеет более совершенную кристаллическую структуру, чем нанообъект.

Силы изображения получили свое название по методу расчета электрических полей.

4) В нанообъектах большое значеие приобртают размерные эффекты, обусловленные рассеянием, рекомбинацией и отражением на границах объектов (речь идет о движении микрочастиц).

В любом явлении переноса (эл.ток, теплопроводность, пластичесая, дефорамция и т.д.)

Носителям можно приписать некую эффективную длину свободного пробега, когда размер объекта>>длины свободного пробега носителя процесс рассеяния и гибели носителей слабо зависит от геометрии объекта. Если же размер объекта сравним с длиной свободного пробега носителя, то эти процессы протекают более интенсивней и они сильно зависят от геометрии образца.

5) Размер наночастиц сопоставим или меньше размера зародыша новой фазы, домена, дислокационная петля, и т.д. Это приводит к радикальному уменьшению магнитных свойств, (наночастица Fe не обладает магнитными свойствами), диэлектрических свойств, прочностных свойств нанообъектов и наноматериалов по сравнению с макрообъектами.

6) Для малого числа атомов вещества характерна реконструкция поверхности, самоорганизация и самосборка. т.е. при объединении атома в кластер происходит образование геометрических структур, которые в дальнейшем могут быть использованы для решения технических задач

Рисунок 1- Сила взаимодействия между атомами.

7) В нанообъектах проявляется квантовые закономерности поведения различных элементарных частиц (электронов). С позиции квантовой механики электрон может представлен волной, описывающей соответствующие волновые функции. Распространение этой волны в твердом теле контролируется эффектами, связанными с т.н. квантовым ограничением (интерференция волны, возможность туннелирования через потенциальные барьеры). Для металлических материалов ограничения, накладываемые волновой природой элементарных частиц пока неактуальны, т.к. для них (для электрон) волна де Бройля λe < 1мм, число составляет несколько атомарных размеров. А в п/п эффективная масса электрона и его скорость движения таковы, что длины волны де Бройля для электрона λe может составлять от 10 до 100 мм. Причем, размеры формируемых структур а п/п уже соизмеримы с данными величинами. Современные микропроцессоры (флэш память) || расстояние между контактами от 0.03мкм до 30мкм.

8) По мере понижения размерности нанообъекта степень дискретизации энергетического спектра электронов нарастает. Для квантовой точки (объекта, состоящего, буквально, из нескольких атомов) электроны приобретают спектр разрешенных энергий, практически, аналогичный отдельному атому.

КЛАССИФИКАЦИЯ НАНООБЪЕКТОВ.

Размерность нанообъекта – основа классификации нанообъектов.

В соответствии с размерностью различают:

1) 0-D нанообъекты – те, у которых все 3 пространственных размера лежат в нанометровом диапазоне (грубо: все 3 размера <100нм)

Такой объект в макроскопическом смысле является нульмерным и поэтому, с точки зрения электронных свойств, такие объекты называются квантовыми точками. В них волна де Бройля больше, чем любой пространственный размер. Квантовые точки используют в лазеростроении, оптоэлектронике, фотонике, сенсорике и др.

2) 1-D нанообъекты – те объекты, которые имеют нанометровые размеры в двух измерениях, а в третьем – макроскопический размер. К ним относят: нанопроволоки, нановолокна, одностенные и многостенные нанотрубки, органические макромолекулы, в т.ч. двойные спирали ДНК.

3) 2-D нанообъекты – те, которые имеют нанометровый размер только в одном измерении, а в двух остальных этот размер будет макроскопическим. К таким объектам относят: тонкие приповерхностные слои однородного материала: плёнки, покрытия, мембраны, многослойные гетероструктуры. Их квазидвумерность дает возможность изменить свойства электронного газа, характеристики электронных переходов (p-n переходов) и т.д. Именно 2-D нанообъекты позволяют придумать основу для разработки принципиально новой элементной базы радиоэлектроники. Это будет уже наноэлектроника, нанооптика и т.д.

В настоящее время 2-D нанообъекты чаще всего служат в качестве всевозможного рода покрытий антифразионных, антикоррозионных и т.д. Большое значение они имеют и для создания различного рода мембран в молекулярных фильтрах, сорбентах и т.д.

КЛАССИФИКАЦИЯ НАНОМАТЕРИАЛОВ.

Учитывая тот факт, что известные на настоящий момент наноматериалы пришли в современные нанотехнологии из различных областей науки и техники, приемлемой единой классификации, на какой-либо основе, просто не существует.

Наноматериалы:

Объемные наноструктурированные материалы

Нанокластеры, наночастицы, нанопорошки

Многослойные наноплёнки, многослойные наноструктуры, многослойные нанопокрытия.

Функциональные (умные) наноматериалы

Нанопористые

Фуллерены и их производные нанотрубки

Биологические и биосовместные материалы

Наноструктурированные жидкости: коллоиды, гели, взвеси, полимерные композиты

Нанокомпозиты.

НАНОЧАСТИЦЫ, НАНОПОРОШКИ

Первые наночастицы были созданы человеком непреднамеренно, случайно, в различных технологических процессах. В настоящее время их стали конструировать и производить специально, что и заложило основу нанотехнологиям. Развитие нанотехнологий привело к принципиальному пересмотру некоторых фундаментальных принципов:

Путь «сверху-вниз» – общая парадигма нанотехнологий (от заготовки отрезается лишнее)

Нанотехнологии предлагают путь «снизу-вверх» – от малого к большому (от атома к объекту). Это парадигма нанотехнологий.

В основном, в настоящее время, в нанотехнологиях доминируют технологические приемы, пришедшие к нам из макротехнологий. Для создания наночастиц, которые относятся к классу 0-D объектов. Современные нанотехнологии применяют способ диспергирования, т.е. измельчения. Для того чтобы измельчить (диспергировать) любой макроскопический объект до наноразмеров обычное диспергирование не подходит. Чем мельче размер частиц, тем выше активность их поверхности, в результате отдельные частицы объединяются в объемные конгломераты. Поэтому для ультратонкого диспергирования требуется применение определенного типа среды в виде поверхностно-активных веществ, которые снижают силы поверхностного натяжения, а также стабилизаторов. Мылоподобные композиции, которые препятствуют повторному слиянию. При определенных условиях. Когда на границе твердого тела поверхностная энергия сильно снижена процесс диспергации может происходить самопроизвольно, за счет. Например, теплового движения частиц. Этими методами можно получить порошки Ме с размерами частиц десятки нм. Оксидами этих металлов с размерами частиц в 1 нм. А также производить диспергацию полимеров, компонентов керамик и т.д.

Способы измельчения: шаровая мельница, вибромельница, аттрикторы, струйные мельницы.

1)

2) Помимо диспергации широко используется процесс, который является комбинированным от двухограниченных парадигм. Этот процесс заключается в испарении твердого вещества с последующей конденсацией в различных условиях. Например, конденсация пара вещества, нагретого до 5000-10000° С в среде охлажденного инертного газа с быстрым удалением образовавшегося порошка из зоны конденсации. Таким образом можно получить порошки с размерами частиц 3-5 нм.

1 – Источник испаряющегося вещества

2- Откачка

3 – Порошок

4 – Скребок

5 – Барабан конденсации


3) Третий способ также имеет отношение к традиционному диспергированию и называется распыление расплавленного вещества в потоке охлажденного газа или жидкости.

В качестве газовой среды струи, сбивающей капельку могут служить N 2 ,Ar 2 , а в качестве жидкости – спирты, вода, ацетон. Таким способом можно получить частицы с размерами около 100 нм.

Все описанные процессы очень производительны но как правило не обеспечивают ультрадисперсности порошка, стабильности размеров частиц и не обеспечивают чистоты процесса. Это не единственные известные способы формирования наночастиц. К 0-D Нанообъектам, помимо ультрадисперсных порошков, относят также фуллерены, углеродные 0-D нанообъекты.

Глава 1- D нанообъекты.

Каждый из названных нанообъектов находит свое применение в различных отраслях техники. Например, нанопроволоки предлагают использовать как проводники в субмикронных и наноэлектронных узлах. Нановолокна применяются как элемент наноструктурированных нанокомпозиционных п/п. Органические макромолекулы также находят применение в создании наноструктурированных материалов.

В медицине, в химической промышленности.

Для электроники очень существенное значение приобрели такие 1-D нанообъекты, как нанотрубки. По большому счету все нанотрубки подразделяя.тся на 2 больших класса:

1) Углеродные нанотрубки (УНТ).

2) Неуглеродные нанотрубки.

Кроме этого все нанотрубки различаются по количеству слоев: однослойные, двуслойные, многослойные.

НЕУГЛЕРОДНЫЕ НАНОТРУБКИ

Все не-УНТ делят на две системы:

1) Переходные наноструктуры, в состав которых входит углерод

2) Дихалькогенидные нанотрубки. В настоящее время из дихалькогенидных трубок известны MoS 2 ,WS 2 ,WSe 2 ,MoTe 2 и т.д. Такие нанотрубки представляют собой сверхтонкие, в идеале – моноатомные слои, материалы, свернутые в рулон.

Некоторые слоистые материалы, в силу асимметричности химических связей, достаточно свободно сворачиваются в такие рулоны самостоятельно, причем единственная проблема при формировании таких структур – это получить свободный, ни с чем не связанный слой вещества атомарной величины. Другие материалы не склонны к самопроизвольному сворачиванию и поэтому в настоящее время разрабатываются технологические приемы, позволяющие формировать нанотрубки принудительно. Существует 3 варианта таких процессов:

1) Гетероэпитаксиальное наращивание тонких слоев материала, из которого мы хотим сформировать нанотрубку, на основании уже имеющейся нанотрубки. Пример GaN→ZnO

Главный недостаток этого способа заключается в том, что трудно подобрать пару материалов для гетероэпитаксиального наращивания

2) Одностенные нанотрубки, полученные путем последовательного уменьшения электронным лучом исходного нанопровода. Пример: Золотые и платиновые нанотрубки. D Pt нанотрубки – 0,48 нм.

3) Основан на выращивании тонкой, напряженной гетероэпитаксиальной структуры, толщиной в несколько монослоев, на плоской подложке, с последующим освобождением этой гетероструктуры от связи с подложкой и сворачиванием в трубку, свиток. 1ML – один монослой.

Процесс сворачивания идет за счет действия межатомных сил в напряженной гетероплёнке.

На In методом гетероэпитаксии выращивается хорошо согласующийся с ним AlAs, затем на эту структуру, методом ГЭ, наращивается слой AsIn. Он имеет параметры кристаллической решетки большие, чем у AlAs и поэтому, когда этот слой наращивается он как бы сжимается. Затем на этот слой опять же методом ГЭ наращивается слой GaAs. Но, в отличие от AsIn, этот слой имеет меньший параметр кристаллической решетки (меньший размер элементарной ячейки) и его, наоборот, растягивает. В результате, когда мы начинаем вытравливать слой AsAl, то освободившаяся структура InAs c AsGa начинает сворачиваться в трубку за счет сил, которые InAs – расширяют, а слой GaAs – стягивают.

Достоинства метода:

1) Диаметр трубок широко варьируется и может быть легко задан набором соответствующих материалов для гетероструктуры.

2) Способ позволяет использовать практически любые материалы (п/п, Ме, диэлектирики) и все их сворачивать в нанотрубки.

3) Хорошее качество и относительно большая длина трубок с однородными по толщине стенками.

4) Метод хорошо стыкуется с технологией интегральных микросхем ИМС.

5) Физические свойства таких нанотрубок определяются материалами исходной гетероструктуры.

2- D НАНООБЪЕКТЫ (ТОНКИЕ ПЛЁНКИ)

Используются в технике. Как покрытия. Создание тонкоплёночных покрытий позволяет существенно изменить свойства исходного материала, не затрагивая объем и не увеличивая геометрические размеры. Толщина не более 1 мкм. Наиболее распространенные цели нанесения покрытия:

1) Повышение износостойкости, термо- и коррозионной устойчивости материалов различных деталей.

2) Создание планарных, однослойных. Многослойных и гетероструктур для элементов микро0, наноэлектроники, оптоэлектроники, сенсорики и т.д.

3) Изменение оптических характеристик поверхности (очки-хамелеоны)

4) для создания магнитных сред в элементах записи и хранения информации.

5) Создание оптических средства записи и хранения информации. CD, DVD диски.

6) Создание поглотителей, сепараторов газовых смесей, катализаторов, химически модифицированных мембран и т.д. Существуют два принципиально различающихся подхода к улучшению служебных характеристик поверхности(т.е. к созданию пленок на них):

1) Модификация приповерхностных слоев различного рода обработкой (химическая, термическая, механическая, радиационная или их комбинации).

2) нанесение дополнительных слоев чужеродных атомов.

Все способы нанесения покрытий можно объединить в две группы:

1) Физическое осаждение из паровой фазы. PVD

2) Химичекое осаждение из паровой фазы. CVD

В обоих случаях процесс осуществляют в вакуумной камере, в которой иногда создается небольшое давление технологического газа (относительно химически нейтральные газы – Ar, N 2, этилен)

В (PVD) физических методах осаждения из паровой фазы используют, в основном, два способа доставки нового материала к подложке.

1) Распыление за счет термического нагрева (нагрев может осуществляться самыми различными способами: резистивным, электронно-лучевым, индукционным, лазерным и т.д.

2) Распыление за счет кинетической энергии Ek ускоренных ионов нейтральных газов, например, ионы Ar. Положительный ион Ar бомбардирует катод, на катоде мишень распыляемого материала и т.о. происходит физическое распыление данного материала.

Разница – только в способах распыления материала

Физическими методами осаждения из паровой фазы наносятся самые различные покрытия, т.к. эти методы обладают широким диапазоном достоинств:

1) Большое разнообразие материалов. Которые могут быть нанесены таким образом (Ме. Сплавы, полимеры, некоторые химические соединения)

2) Возможность получения качественных покрытий в очень широком диапазоне температур подложки.

3) Высокая чистота этого процесса, что обеспечивает хорошее качество сцепления.

4) Отсутствие существенного изменения размеров деталей.

В методах химического осаждения из паровой фазы твердые продукты (плёнка) на подложке растут в результате химической реакции с участием атомов рабочей атмосферы камеры. В качестве источников энергии для протекания такой реакции используют плазму какого-либо электрического разряда, иногда лазерное излучение. Данный вид технологических процессов более разнообразен, чем предыдущий. Он используется не только для создания покрытий, но для изготовления нанопорошков, которые потом удаляются с поверхности подложки.

Таким способом можно получить химические соединения с углеродом – карбиды, с N – нитриды, оксиды и т.д.

Достоинствами химического осаждения из паровой фазы является:

1) гибкость и большое разнообразие, которое позволяет осаждать покрытя на подложках разной природы и формы (на волокнах, порошках и т.д.)

2) Относительная простота необходимого технологического оборудования. Легкая автоматизируемость.

3) Большой выбор химических реакций и веществ, пригодных к использованию

4) Регулируемость и контролируемость структуры покрытия, его толщины и размера зёрен.

5) зерна – элементы поликристаллической структуры, те кристаллы, составляющие поликристаллы.

Большую роль в производстве тонкоплёночных структур играют эпитаксиальные процессы. Эпитаксия – это технологический процесс ориентированного наращивания слоя материала на поверхность того же самого или другого материала, т.е. подложки, выполняющей функцию создания ориентирующего воздействия. Если материалы подложки и пленки совпадают, то процесс носит название автоэпитаксия, если материалы подложки и пленки – разные, то это гетероэпитаксия. Все эпитаксиальные процессы делятся на два класса:

1) Процессы со средой носителем (жидкофазные и газофазные эпитаксии).

2) Без среды носителя (вакуумные эпитаксии). Молекулярно-пучковая или молекулярно-лучевая эпитаксия.

Жидкофазная эпитаксия. Достоинства недостатки.

Эпитаксия из жидкой фазы в основном применяется для получения многослойных полупроводниковых соединений, таких как GaAs, CdSnP2; также является основным способом получения монокристаллического кремния. Процесс проводят в атмосфере азота и водорода (для восстановления оксидных плёнок на поверхности подложек и расплава) или в вакууме(предварительно восстановив оксидные плёнки). Расплав наносится на поверхность подложки, частично растворяя её и удаляя загрязнения и дефекты.

Газофазная эпитаксия. Достоинства недостатки.

Газофазная эпитаксия - получение эпитаксиальных слоев полупроводников путём осаждения из паро-газовой фазы. Наиболее часто применяется в технологии кремниевых, германиевых и арсенид-галлиевых полупроводниковых приборов и ИС. Процесс проводится при атмосферном или пониженном давлении в специальных реакторах вертикального или горизонтального типа. Реакция идёт на поверхности подложек (полупроводниковых пластин), нагретых до 750 - 1200 °C

Молекулярно-лучевая (пучковая) эпитаксия. Достоинства недостатки.

Молекулярно-пучковая эпитаксия (МПЭ) или молекулярно-лучевая эпитаксия (МЛЭ) - эпитаксиальный рост в условиях сверхвысокого вакуума. Позволяет выращивать гетероструктуры заданной толщины с моноатомно гладкими гетерограницами и с заданным профилем легирования. Для процесса эпитаксии необходимы специальные хорошо очищенные подложки с атомарно-гладкой поверхностью.

Ориентированное наращивание. Невооруженным глазом видно кристаллическое тело – плоская, твердая поверхность.

В микроскоп: атомные и химические связи

Любой атом, находящийся непосредственно на поверхности имеет оборванную, незавершенную химическую связь. И эта связь представляет собой минимум Ep.

Ориентирующее действие атомов подложки на расположение свободного атома, когда он осаждается на поверхность.

УГЛЕРОДНЫЕ НАНОМАТЕРИАЛЫ

Американский архитектор Фуллер ввел новый элемент конструкции в архитектуру.

В 1985г. Были обнаружены частицы углерода, соединенные в аналогичную конструкцию. Эти вещества были названы фуллеренами. Фуллерен C-60 (60 атомов С), фуллерен C-70 (70 атомов С), возможен фуллерен C-1000000.

Атомы углерода могут образовывать высокосимметричную молекулу С-60, состоящую из 60 атомов и располагающихся в сфере диаметром 1нм. При этом, в соответствии с теоремой Леонарда Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников.

Молекулы С-60, в свою очередь, могут образовать кристалл, который называется фуллерит, обладающий границентрированной кубической решеткой (ГЦК) и достаточно слабыми межмолекулярными связями. Учитывая, что фуллерены гораздо крупнее атомов, то решетка получается неплотноупакованной, т.е. имеет полости в объеме октаэдрические, а тетраэдрические в полости, в которых могут находиться посторонние атомы. Если заполнить октаэдрические полости ионами щелочных Ме (K,Rb,Cs), то при температурах ниже комнатной, фуллерен превращается в принципиально новый полимерный материал, что очень удобно для формирования из заготовки полимера в околоземном пространстве (например, пузырей). Если заполнить тетраэдрические полости уже другими ионами, то образуется новый сверхпроводящий материал с критической t=40÷20 K. Благодаря способности к адсорбции различных веществ, фуллериты служат основой для создания новых уникальных материалов. Пример, C 60 C 2 H 4 имеет мощные ферромагнитные свойства. В настоящее время известно и используется боле 10000 видов. Из углерода можно получать молекулы с гигантским числом атомов. Например, C 1000000 . Это, чаще всего, УНТ одностенные или многостенные (вытянутые нанотрубки). При этом, диаметр такой нанотрубки ≈1нм, а длина – единицы, десятки мм – максимальная длина. Концы такой трубочки закрыты с помощью 6 правильных пятиугольников. В настоящее время это самый прочный материал. Графен – правильный шестиугольник, имеет плоскую структуру, но может быть и волнистый в том случае, если лист графена создан не из чередования правильных шестиугольников, а из комбинации 5-7 угольников.

СИНТЕЗ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ.

Первые фуллерены были выделены из конденсированных паров графита, получаемых при лазерном испарении твердых графитовых образцов. В 1990г. Ряд ученых (Кретчер, Хофман) разработали метод получения фуллеренов в размере нескольких грамм. Метод заключался в сжигании графитовых стержней – электродов в электрической дуге в атмосфере He при низких давлениях. Подбор оптимальных параметров процесса позволил оптимизировать выход годных фуллеренов, который от первоначальной массы стержня - 3-5% от массы анода, что, отчасти, объясняет высокую стоимость фуллерена. Этим заинтересовались японцы. Фирме Mitsubishi удалось наладить промышленное производство годных фуллеренов методом сжигании углеводородов. Но такие фуллерены – не чистые, они содержат в своем составе O 2 . Поэтому единственный чистый способ получения – сжигание в атмосфере He.

Сравнительно быстрое увеличение общего количества установок для получения фуллеренов и их очистки привело к существенному снижению цен на них (сначала 1 грам – 10000$, а сейчас - 10÷15$). Высокую стоимость фуллерена (как и других углеродных н/м) объясняет не только низкий % выхода, но и сложная система очистки. Стандартная схема очистки: при сжигании образуется что-то вроде сажи. Её смешивают с растворителем (толуолом),затем эту смесь фильтруют, после отгоняют на центрифуге, так, чтобы из оставшихся мелких включений выделить наиболее крупные. Затем выпаривают. Оставшийся темный осадок – мелкодисперсная смесь различных фуллеренов. Эту смесь следует разделить по индивидуальным составляющим. Это производят с помощью жидкой хроматографии, высокоразрешающей электронной микроскопии и с помощью сканирующей зондовой микроскопии.

Первоначально УНТ также получали методом электродугового или лазерного испарения графита с последующей конденсацией в среде инертного газа. Этот метод оказался далеко не лучшим. Поэтому на данный момент наиболее практичный метод – химическое осаждение из пара. Для этого берут углеродосодержащее соединение, например, ацетилен, его разлагают на поверхности очень сильно нагретого Ме катализатора. И на поверхности этого катализатора начинают расти УНТ плотным пучком. Данная реакция называется каталитическим пиролизом газообразных углеводородов. Чаще всего реализуется во вращающихся трубчатых печах. В качестве катализаторов при этом выступают Fe, Co, Ni, частицами которых насыщают кусочки цеолита. Цеолит – природный минерал. В отличие от электродугового, лазерного и других видов высокотемпературного синтеза, каталитический пиролиз позволяет изготовление углеродных наноструктур в промышленных, а не лабораторных масштабах, и хотя они менее чистые и менее однородные по составу, они могут быть использованы. Графен – частица графита. Чешуйки графена помещают на подложку окисленного Si, что и позволяет исследовать графен, как самостоятельные материал, т.е. для электрофизических измерений. Пример, химический способ получения графена: кристаллический графит подвергают воздействию HCl и H2SO4, что приводит к окислению на краях, в этих листиках графена. Карбоксильную группу графена превращают в хлориды, путем обработки тионилхлорида. Затем, под действием октадециламина, в растворах тетрагидрофуранов, тетрахлорметана и дихлорэтана происходит превращение в графеновые слои толщиной 0,54 нм.

Способ получения графена на подложках карбида кремния, при этом графен образуется путем термического разложения карбида кремния на поверхности подложки. Исследования показали, что слой графита, который выделяется в этом случае, имеет толщину большую, чем один атомарный слой, но т.к. на границе раздела между карбидом кремния SiC образуется некомпенсированный заряд, из-за разности работ выхода электронов, то в проводимости участвует только один атомарный слой графита, то есть этот слой, по сути, является графеном.

ИСПОЛЬЗОВАНИЕ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

1) Для модификации оптических сред используются фуллерены.

2) Для изготовления принципиально новых композиционных материалов, причем, как с примесями нанотрубок, так и с фуллеренами

3) Для сверхтвердых покрытий. Поверхности инструментов, трущихся деталей ит.д. Достигают свойства алмаза по твердости.

4) Для смазочных составов и присадок.

5) Для контейнеров, т.н. водородного топлива, которые в дальнейшем будут использоваться как химические источники энергии

6) Для изготовления наносенсоров, регистрирующих физические и химические виды воздействия. Чувствительность – 1 молекула чужеродного вещества.

7) Зондов, для сканирующей микроскопии.

8) Для изготовления атомных манипуляторов

9) Для изготовления наномеханических накопителей информации.

10) Для изготовления нанопроводников, нанорезисторов, нанотранзисторов, нанооптических элементов.

11) Для изготовления защитных экранов от э/м излучения и высоких температур. Технология «стелс».

12) Можно изготавливать наноконтейнеры для лекарств.

13) Для изготовления крупногабаритных плоскопараллельных дисплеев высокой четкости и яркости.

ПРИНЦИП РАБОТЫ СКАНИРУЮЩЕГО ТУННЕЛЬНОГО МИКРОСКОПА (СТМ)

Если сблизить два отдельных атома на достаточное расстояние, то между этими атомами возможен обмен электронами без дополнительного приобретения этими электронами энергии. Следовательно, если взять два тела, сблизить на достаточное расстояние, то между этими телами потечет туннельный электрический ток, т.к. процесс перехода электронов через потенциальный барьер без приобретения энергии называется туннелированием. Для реальзации этого необходимо выполнение двух условий:

1) У одного из тел должны быть свободные электроны, а у другого незаполненные электронные уровни, на которые эти электроны могли бы перейти.

2) Между телами требуется приложить разность потенциалов, причем её величина меньше, чем при пробое воздушного зазора.

В СТМ одно из таких тел – это зонд.

При сближении зонда и поверхности объекта на расстояние, примерно, 0.5 нм (когда волновые функции ближайших друг к другу атомов начинают перекрываться) и при приложении разности потенциалов≈0,1÷1 В между зондом и объектом начинает течь т.н. туннельный ток.

Диаметр пучка этого туннельного тока ≈0,4 нм, что обеспечивает высокую разрешающую способность микроскопа по плоскости объекта. Туннельный ток составит 3 нА. Важно отметить, что при изменении расстояния L на 0,1 нм, туннельный ток меняется в 10 раз. Именно это обеспечивает высокую разрешающую способность микроскопа на высоте объекта. Фактически, в процессе проведения измерения, зонд, перемещаясь над поверхностью объекта сохраняет постоянную высоту.


Фиксация положения зонда, его координат в системе XYZ позволяет отследить профиль поверхности и преобразовать затем в соответствующую картину на экране монитора.

Т.к. расстояние между зондом и исследуемой поверхностью в процессе измерения составляет не более 0.3÷1 нм, то можно утверждать, что процесс измерения, фактически, изменяется в вакууме. В воздухе – 20 нм. Фактически, окружающая среда оказывает влияние за счет адсорбированных на поверхности молекул.

ТЕХНИЧЕСКИЕ ВОЗМОЖНОСТИ СКАНИРУЮЩЕГО ТУННЕЛЬНОГО МИКРОСКОПА (СТМ)

Основными техническими характеристиками являются:

1) Разрешение по нормали к исследуемой поверхности объекта

2) Разрешение в плоскости XY, т.е. в плоскости поверхности объекта

Высокое разрешение СТМ по нормали к поверхности объекта порядка 0.01 нм. Определяется крутой экспоненциальной зависимостью туннельного тока от расстояния между объектом и зондом. В плоскости XY высокое разрешение обеспечивается диаметром пучка электронов туннельного тока, который, в свою очередь, зависит от степени заточки иглы зонда. При многократном прохождении зонда с шагом≈0.02 нм разрешение в плоскости XY может достигать 0.03 нм. Реальное разрешение СТМ зависит от множества факторов, главными из которых являются: внешние вибрации, акустические шумы, качество зондов. Помимо разрешения микроскопа, важнейшей характеристикой является т.н. полезное увеличение ,

где dГ=200 мкм (разрешение глаза), dМ - максимальное разрешение микроскопа. dМ =0.03 нм (для СТМ). Т.о. раз. Для сравнения: у лучших оптических микроскопов раз

Другие важные характеристики СТМ:

Максимальный размер поля сканирования 1x1 мкм.

Максимальное перемещение зонда по OZ (в процессе измерения) почти не превышает 1 мкм.

В принципе современные микроскопы могут обеспечивать поле сканирования до нескольких сотен , но при этом ухудшается точность. Помимо измерения профиля поверхности и создания её визуальной модели, СТМ позволяет судить о типе электропроводности материала (для п/п), установить параметры валентной зоны ВЗ, зоны проводимости ЗП, энергетические характеристики примесей (т.е. определить положение примесных уровней). Определить химический тип связи между атомами поверхности объекта; определить химический состав поверхности объекта или поверхностного слоя – т.н. СТМ спектроскопия.

АТОМНО-СИЛОВОЙ МИКОРСКОП (СКАНИРУЮЩИЙ СИЛОВОЙ МИКРОСКОП) АСМ.

Отличие от СТМ заключается в том, что зонды (кантилеверы) взаимодействуют с исследуемой поверхностью не электрическим путем, а силовым.

Зависимость силы двух атомов от расстояния. Сила отталкивания возрастает в . Совместить два атома в одной точке пространства принципиально невозможно.

Игла кантилевера касается поверхности объекта и отталкивается этой поверхностью, когда приближается на расстояние межатомарного взаимодействия. Колебания зонда кантилевера преобразуются в электрические сигналы различными способами (самый простейший – оптический способ). Оптический способ:

Этот сигнал имеет в себе информацию о высоте. На которую опустился кантилевер на конкретном шаге измерения. Информация о перемещении в плоскости XY фиксируется от механизмов перемещения этой исследуемой плоскости.

Помимо оптических методов преобразования могут быть использованы емкостные или туннельные сенсоры, т.к. между исследуемым объектом и зондом (в режим е АСМ микроскопии), то АСМ может исследовать не только проводящие объекты, но и диэлектрические. Требования к объекту – он должен быть гладкий (чтобы не было больших перепадов высот) и твердый (газообразный и жидкий объекты нет смысла исследовать).

Разрешающая способность АСМ напрямую зависит от качества заточки зонда.

Основные технические сложности данного вида микроскопии:

1) Сложность изготовления зонда, заостренного до размеров одного атома.

2) Обеспечение механической. В том числе. Тепловой и вибрационной стабильности на уровне лучше 0.1 Å.

3) Создание детектора. Способного регистрировать столь малые перемещения.

4) Создание системы развертки с шагом в доли Å.

5) Обеспечение плавного сближения иглы зонда с поверхностью.

В сравнении с растровым электронным микроскопом РЭМ, АСМ обладает рядом преимуществ:

1) АСМ позволяет получить истинно трехмерный рельеф поверхности, у РЭМ 2D изображение

2) Непроводящая поверхность, рассматриваемая с помощью АСМ не требует нанесения металлического слоя.

3) Для нормальной работы РЭМ требуется вакуум, для АСМ вакуум не требуется.

4) АСМ потенциально может дать более высокое разрешение, чем РЭМ
Недостатками АСМ можно считать:

1) Небольшой размер поля сканирования (по сравнению с РЭМ).

2) Жесткие требования к размеру вертикальных перепадов высот сканируемой поверхности. В РЭМ напильник увидим, в АСМ – нет.

3) Жесткие требования к геометрии зонда. Который очень легко повредить.

4) Практическая неустранимость искажений. Которые вносит тепловое движение атомов исследуемой поверхности. Этот недостаток можно было бы искоренить в том случае, если бы скорость сканирования превышала скорость теплового движения молекул, т.е. в каждый момент времени картина уже другая.

Все эти проблемы так или иначе компенсируются за счет программной обработки результатов измерения, однако, следует помнить, что то, что мы видим на экране компьютера – не реальная поверхность, а модель, и степень достоверности модели – под вопросом.

В настоящее время сканирующие зондовые микроскопы СТМ и АСМ нашли широкое применение во всех областях науки (в физике, химии, биологии, в материаловедении).

Нанотехнологические зондовые машины.

Первоначально, когда была установлена принципиальная возможность перемещения отдельных атомов зондом СТМ, у ученых возникла некоторая эйфория – они уже мечтали о сборке всяких объектов не только наномира, но и макромира. Тем не менее на основе достижений СТМ микроскопии были созданы устройства, которые называются нанотехнологические зондовые машины. Если между объектом и зондом приложить большую разность потенциалов, чем при измерении параметров поверхности объекта, то за счет энергии можно возбуждать любой атом поверхности (оторвать от поверхности). Этот возбужденный атом. Как правило, прилипает к зонду, и, соответственно, может быть этим зондом перенесен на новое место, а при снижении энергии, подаваемой на зонд (при снижении разности потенциалов), снова опущен на поверхность. Но в те времена не была решена проблема закрепления (принудительного) чужеродных атомов на поверхности объекта в условиях, отличных от абсолютного нуля или близких к абсолютному нулю.

Благодаря проведенным исследованиям нам теперь известны энергии возбуждения атомов различных материалов и решён вопрос подачи атомарного газа в зону работы зонда СТМ. По сути именно наличие устройства подачи атомарного газа в рабочую зону отличает зондовую нанотехнологическую машину от СТМ.

В настоящее время уже разработаны принципы управления многозондовыми машинами, что позволяет увеличить их производительность, а следовательно повысить вероятность более широкого применения такой зондовой поатомной сборки и, в конечном счете, с делать рентабельной сборку по направлению «снизу-вверх».

В КАКИХ НАПРАВЛЕНИЯХ РАЗВИВАЮТСЯ НАНОТЕХНОЛОГИИ.

1) Реализуется направление «снизу-вверх», т.е. поатомная сборка.

2) Создание макроскопическими и физикохимическими методами новых наноматериалов.

ДОСТИЖЕНИЯ НАНОТЕХНОЛОГИЙ.

1) Нанометровый контроль поверхности востребован в производстве таких вещей, как контактные линзы, создание наноэлектронных приборов.

2) сканирующая зондовая микроскопия по точности не имеет себе равных в настоящее время. С её помощью можно находить и перемещать отдельные атомы и создавать группы атомов. Однако такие конструкции не подходят для массового использования.

Самым перспективным материалом, с точки зрения нанотехнологий, является углерод С, обладающий уникальным химическими свойствами:

1) Позволяет создавать молекулы с неограниченным числом атомов.

2) Он обладает изоморфностью кристаллической решетки, т.е. различными типами кристаллической решетки.

В настоящее время в нанотехнологии вкладываются огромные деньги.

Термин «наноэлектроника» логически связан с термином «микроэлектроника» и отражает переход современной полупроводниковой электроники от элементов с характерным размером в микронной и субмикронной области к элементам с размером в нанометровой области. Этот процесс развития технологии отражает эмпирический закон Мура, который гласит, что количество транзисторов на кристалле удваивается каждые полтора-два года.

К наноматериалам условно относят дисперсные и массивные материалы, содержащие структурные элементы (зерна, кристаллиты, блоки, кластеры и другие), геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми функциональными и эксплуатационными характеристиками. К нанотехнологиям можно отнести технологии, обеспечивающие возможность контролируемым образом создавать и модифицировать наноматериалы, а также осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Среди основных составляющих науки о наноматериалах и нанотехнологиях можно выделить следующие:

    фундаментальные исследования свойств материалов на наномасштабном уровне;

    развитие нанотехнологий для целенаправленного создания наноматериалов, а также поиска и использования природных объектов с наноструктурными элементами, создание готовых изделий с использованием наноматериалов и интеграция наноматериалов и нанотехнологий в различные отрасли промышленности и науки;

    развитие средств и методов исследования структуры и свойств наноматериалов, а также методов контроля и аттестации изделий и полуфабрикатов для нанотехнологий.

XXI век ознаменовался революционным началом развития нанотехнологий и наноматериалов. Они уже используются во всех развитых странах мира в наиболее значимых областях человеческой деятельности (промышленности, обороне, информационной сфере, радиоэлектронике, энергетике, транспорте, биотехнологии, медицине). Анализ роста инвестиций, количества публикаций по данной тематике и темпов внедрения фундаментальных и поисковых разработок позволяет сделать вывод о том, что в ближайшие 20 лет использование нанотехнологий и наноматериалов будет являться одним из определяющих факторов научного, экономического и оборонного развития государств. В настоящее время интерес к новому классу материалов в области как фундаментальной и прикладной науки, так промышленности и бизнеса постоянно увеличивается. Это обусловлено следующими причинами:

    стремлением к миниатюризации изделий,

    уникальными свойствами материалов в наноструктурном состоянии,

    необходимостью разработки и внедрения материалов с качественно и количественно новыми свойствами,

    развитием новых технологических приемов и методов, базирующихся на принципах самосборки и самоорганизации,

    практическим внедрением современных приборов исследования, диагностики и модификации наноматериалов (сканирующая зондовая микроскопия),

    развитием и внедрением новых технологий, представляющих собой последовательность процессов литографии, технологий получения нанопорошков.

Направление наноструктурных исследований уже почти полностью сместилось от получения и изучения нанокристаллических веществ и материалов в область нанотехнологии, т. е. создания изделий, устройств и систем с наноразмерными элементами. Основные области применения наноразмерных элементов - это электроника, медицина, химическая фармацевтика и биология.

Г. Г. Еленин

Краткая справка об авторе: профессор факультета вычислительной математики и кибернетики Московского государственного университета им. М.В.Ломоносова, ведущий научный сотрудник Института прикладной математики им. М.В.Келдыша РАН.

Если уж стальной кубик или кристаллик соли, сложенный из одинаковых атомов, может обнаруживать интересные свойства; если вода - простые капельки, неотличимые друг от друга и покрывающие миля за милей поверхность Земли, - способна порождать волны и пену, гром прибоя и странные узоры на граните набережной; если все это, все богатство жизни вод - всего лишь свойство сгустков атомов, то сколько же еще в них скрыто возможностей? Если вместо того, чтобы выстраивать атомы по ранжиру, строй за строем, колонну за колонной, даже вместо того, чтобы сооружать из них замысловатые молекулы запаха фиалок, если вместо этого располагать их каждый раз по-новому, разнообразя их мозаику, не повторяя того, что уже было, - представляете, сколько необыкновенного, неожиданного может возникнуть в их поведении.

Р. П. Фейнман

Предмет, цели и основные направления в нанотехнологии

Согласно Энциклопедическому словарю , технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров 1 . "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие "нанотехнология" еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.

Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений.

Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

Материаловедение. Создание "бездефектных" высокопрочных материалов, материалов с высокой проводимостью.

Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов 2 , магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

Медицина. Проектирование наноинструментария для уничтожения вирусов, локального "ремонта" органов, высокоточной доставки доз лекарств в определенные места живого организма.

Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.

Сканирующая туннельная микроскопия

Значительную роль в неудержимом исследовании наномира сыграли, по крайней мере, два события:

Создание сканирующего туннельного микроскопа (G. Ben-nig, G. Rohrer, 1982 г.) и сканирующего атомно-силового микроскопа (G. Bennig, К. Kuatt, К. Gerber, 1986 г.) (Нобелевская премия 1992 г.);

Открытие новой формы существования углерода в природе - фуллеренов (Н. Kroto, J. Health, S. O"Brien, R. Curl, R. Smal-ley, 1985 r.) (Нобелевская премия 1996 г.).

Новые микроскопы позволили наблюдать атомно-молекулярную структуру поверхности монокристаллов в нанометровом диапазоне размеров. Наилучшее пространственное разрешение приборов составляет сотую долю нанометра по нормали к поверхности. Действие сканирующего туннельного микроскопа основано на туннелировании электронов через вакуумный барьер. Высокая разрешающая способность обусловлена тем, что туннельный ток изменяется на три порядка при изменении ширины барьера на размеры атома. Теория квантового эффекта туннелирования заложена Г.А. Гамовым в 1928 г. в работах по a-распаду .

С помощью различных сканирующих микроскопов в настоящее время наблюдают за атомной структурой поверхностей монокристаллов металлов, полупроводников, высокотемпературных сверхпроводников, органических молекул, биологических объектов. На рис. 1 показана реконструированная поверхность нижней террасы грани (100) монокристалла кремния . Серые кружки являются образами атомов кремния. Темные области являются локальными нанометровыми дефектами. На рис. 2 приведена атомная структура чистой поверхности грани (110) серебра (левая рамка) и той же поверхности, покрытой атомами кислорода (правая рамка) . Оказалось, что кислород адсорбируется не хаотично, а образует достаточно длинные цепочки вдоль определенного кристаллографического направления. Наличие сдвоенных и одинарных цепочек свидетельствует о двух формах кислорода.

Эти формы играют важную роль в селективном окислении углеводородов, например этилена. На рис. 3 можно видеть наноструктуру высокотемпературного сверхпроводника Bi 2 Sr 2 CaCu 2 O 2 . В левой рамке рис. 4 отчетливо видны кольца молекул бензола (С 6 Н 6) . В правой рамке показаны СН 2 -цепочки полиэтилена . В работе представлена последовательность кадров лабораторного фильма о проникновении вируса в живую клетку.

Новые микроскопы полезны не только при изучении атомно-молекулярной структуры вещества. Они оказались пригодными для конструирования наноструктур. С помощью определенных движений острием микроскопа удается создавать атомные структуры. На рис, 5 представлены этапы создания надписи "IBM" из отдельных атомов ксенона на грани (110) монокристалла никеля . Движения острия при создании наноструктур из отдельных атомов напоминают приемы хоккеиста при продвижении шайбы клюшкой. Представляет интерес создание компьютерных алгоритмов, устанавливающих нетривиальную связь между движениями острия и перемещениями манипулируемых атомов на основе соответствующих математических моделей. Модели и алгоритмы необходимы для разработки автоматических "сборщиков" наноконструкций.

Рис. 4: а - С 6 Н 6 ; b - СН 2 -СН 2

Рис. 5. Xe/Ni (110)

Наноматериалы

Фуллерены, как новая форма существования углерода в природе наряду с давно известными алмазом и графитом, были открыты в 1985 г. при попытках астрофизиков объяснить спектры межзвездной пыли . Оказалось, что атомы углерода могут образовать высокосимметричную молекулу С 60 . Такая молекула состоит из 60 атомов углерода, расположенных на сфере с диаметром приблизительно в один нанометр и напоминает футбольный мяч (рис. 6). В соответствии с теоремой Л. Эйлера, атомы углерода образуют 12 правильных пятиугольников и 20 правильных шестиугольников. Молекула названа в честь архитектора Р. Фуллера, построившего дом из пятиугольников и шестиугольников. Первоначально С 60 получали в небольших количествах, а затем, в 1990г., была открыта технология их крупномасштабного производства .

Фуллериты. Молекулы С 60 , в свою очередь, могут образовать кристалл фуллерит с гранецентрированной кубической решеткой и достаточно слабыми межмолекулярными связями . В этом кристалле имеются октаэдрические и тетраэдри-ческие полости, в которых могут находиться посторонние атомы. Если октаэдрические полости заполнены ионами щелочных металлов (¦ = К (калий), Rb (рубидий), Cs (цезий)), то при температурах ниже комнатной структура этих веществ перестраивается и образуется новый полимерный материал ¦1С60 . Если заполнить также и тетраэдрические полости, то образуется сверхпроводящий материал ¦зС60 с критической температурой 20-40 К. Изучение сверхпроводящих фуллери-тов проводится, в частности, в Институте им. Макса Планка в Штутгарте . Существуют фуллериты и с другими присадками, дающими материалу уникальные свойства. Например, С60-этилен имеет ферромагнитные свойства . Высокая активность в новой области химии привела к тому, что уже к 1997 г. насчитывалось более 9000 фуллереновых соединений.

Углеродные нанотрубки. Из углерода можно получить молекулы с гигантским числом атомов . Такая молекула, например С=1000000, может представлять собой однослойную трубку с диаметром около нанометра и длиной в несколько десятков микрон (рис. 7). На поверхности трубки атомы углерода расположены в вершинах правильных шестиугольников. Концы трубки закрыты с помощью шести правильных пятиугольников. Следует отметить роль числа сторон правильных многоугольников в формировании двухмерных поверхностей, состоящих из

Рис. 7. Нехиральные нанотрубки: а - С(n", n) - металл ;

Ь-С(n, 0):mod (n, 3) = 0 - полуметалл

mod (n, 3)!= 0 - полупроводник.

Рис. 8. Изогнутая трубка

атомов углерода, в трехмерном пространстве. Правильные шестиугольники являются ячейкой в плоском графитовом листе, который можно свернуть в трубки различной хиральности (m, n) 3 . Правильные пятиугольники (семиугольники) являются локальными дефектами в графитовом листе, позволяющими получить его положительную (отрицательную) кривизну. Таким образом, комбинации правильных пяти-, шести- и семиугольников позволяют получать разнообразные формы углеродных поверхностей в трехмерном пространстве (рис. 8). Геометрия этих наноконструкций определяет их уникальные физические и химические свойства и, следовательно, возможность существования принципиально новых материалов и технологий их производства. Предсказание физико-химических свойств новых углеродных материалов осуществляется как с помощью квантовых моделей, так и расчетов в рамках молекулярной динамики. Наряду с однослойными трубками имеется возможность создавать и многослойные трубки . Для производства нанотрубок используются специальные катализаторы .

В чем уникальность новых материалов? Остановимся лишь на трех важных свойствах.

Сверхпрочные материалы. Связи между атомами углерода в графитовом листе являются самыми сильными среди известных, поэтому бездефектные углеродные трубки на два порядка прочнее стали и приблизительно в четыре раза легче ее! Одна из важнейших задач технологии в области новых углеродных материалов заключается в создании нанотрубок "бесконечной" длины. Из таких трубок можно изготовлять легкие композитные материалы предельной прочности для нужд техники нового века. Это силовые элементы мостов и строений, несущие конструкции компактных летательных аппаратов, элементы турбин, силовые блоки двигателей с предельно малым удельным потреблением топлива и т.п. В настоящее время научились изготавливать трубки длиной в десятки микрон при диаметре порядка одного нанометра .

Высокопроводящие материалы. Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные из нанотрубок, при комнатной температуре будут иметь электропроводность на два порядка выше, чем медные кабели. Дело за технологией, позволяющей производить трубки достаточной длины и в достаточном количестве,

Нанокластеры

К множеству нанообъектов относятся сверхмалые частицы, состоящие из десятков, сотен или тысяч атомов. Свойства кластеров кардинально отличаются от свойств макроскопических объемов материалов того же состава. Из нанокластеров, как из крупных строительных блоков, можно целенаправленно конструировать новые материалы с заранее заданными свойствами и использовать их в каталитических реакциях, для разделения газовых смесей и хранения газов. Одним из примеров является Zn 4 O(BDC) 3 (DMF) 8 (C 6 H 5 Cl) 4 . Большой интерес представляют магнитные кластеры, состоящие из атомов переходных металлов, лантиноидов, актиноидов. Эти кластеры обладают собственным магнитным моментом, что позволяет управлять их свойствами с помощью внешнего магнитного поля. Примером является высокоспиновая металлоорганическая молекула Mn 12 O 12 (CH 3 COO) 16 (H 2 O) 4 . Эта изящная конструкция состоит из четырех ионов Мn 4+ со спином 3/2, расположенных в вершинах тетраэдра, восьми ионов Мn 3+ со спином 2, окружающих этот тетраэдр. Взаимодействие между ионами марганца осуществляется ионами кислорода. Антиферромагнитные взаимодействия спинов ионов Мn 4+ и Мn 3+ приводят к полному достаточно большому спину, равному 10. Ацетатные группы и молекулы воды отделяют кластеры Мn 12 друг от друга в молекулярном кристалле. Взаимодействие кластеров в кристалле чрезвычайно мало. Наномагниты представляют интерес при проектировании процессоров для квантовых компьютеров . Кроме того, при исследовании этой квантовой системы обнаружены явления бистабильности и гистерезиса . Если учесть, что расстояние между молекулами составляет около 10 нанометров, то плотность памяти в такой системе может быть порядка 10 гигабайт на квадратный сантиметр.

Наноустройства

Нанотрубки могут составлять основу новых конструкций плоских акустических систем и плоских дисплеев, то есть привычных макроскопических приборов. Из наноматериалов могут быть созданы определенные наноустройства, например нано-двигатели, наноманипуляторы, молекулярные насосы, высокоплотная память, элементы механизмов нанороботов. Кратко остановимся на моделях некоторых наноустройств.

Молекулярные шестерни и насосы. Модели наноустройств предложены К.Е. Drexler и R. Merkle из IMM (Institute for Molecular Manufacturing, Palo Alto) . Валами шестеренок в коробке передач являются углеродные нанотрубки, а зубцами служат молекулы бензола. Характерные частоты вращения шестеренок составляют несколько десятков гигагерц. Устройства "работают" либо в глубоком вакууме, либо в инертной среде при комнатной температуре. Инертные газы используются для "охлаждения" устройства.

Алмазная память для компьютеров. Модель высокоплотной памяти разработана Ch. Bauschlicher и R. Merkle из NASA . Схема устройства проста и состоит из зонда и алмазной поверхности. Зонд представляет собой углеродную нанотрубку (9, О) или (5, 5), заканчивающуюся полусферой С 60 , к которой кpeпится молекула C 5 H 5 N. Алмазная поверхность покрывается монослоем атомов водорода. Некоторые атомы водорода замещаются атомами фтора. При сканировании зонда вдоль алмазной поверхности, покрытой монослоем адсорбата, молекулу C 5 H 5 N, согласно квантовым моделям, способна отличить адсорбированный атом фтора от адсорбированного атома водорода. Поскольку на одном квадратном сантиметре поверхности помещается около 1015 атомов, то плотность записи может достигать 100 терабайт на квадратный сантиметр.

Приведенные выше примеры результатов лабораторного эксперимента и моделей наноустройств являются новым вызовом теории, вычислительной физике, химии и математике. Требуется осмысление "увиденного" и "полученного". Требуется выработка интуиции для работы в нанометровом диапазоне размеров. В очередной раз слышна реплика Фауста Вагнеру :

"Что значит понимать?

Вот, друг мой, в чем вопрос.

На этот счет у нас не все в порядке".

Новые разделы вычислительной физики и вычислительной химии

Более пятидесяти лет назад атомная и термоядерная Ц проблемы, проблемы создания новых летательных аппаратов и освоения околоземного пространства в очередной раз поставили фаустовский вопрос о новом уровне понимания физических и химических явлений. Успешная работа над этими проблемами привела к возникновению и развитию

1) вычислительной физики, в частности таких ее направлений, как

магнитная и радиационная гидро- и аэродинамика,

механика полета космических аппаратов,

теория плазмы и управляемого термоядерного синтеза;

2) вычислительной химии с такими разделами, как

теория уравнения состояния вещества,

молекулярная динамика,

теория химических процессов и аппаратов;

3) вычислительной математики и информатики с такими направлениями, как

численные методы математической физики,

теория автоматов,

оптимальное управление,

распознавание образов,

экспертные системы,

автоматическое проектирование.

Современные возможности лабораторного эксперимента по наблюдению и изучению явлений в нанометровой шкале пространственных размеров и заманчивые перспективы создания уникальных материалов и наноустройств порождают новые теоретические проблемы.

Хотелось бы понять, что на самом деле "наблюдается" при сканирующей туннельной микроскопии?

Что нового можно потенциально наблюдать и что нового можно потенциально получать в наносистемах? И при каких условиях?

Как управлять отдельными атомами и группами атомов и молекул для достижения определенных целей? Каковы границы этого управления?

Как организовать самосборку наноустройств и уникальных "бездефектных" материалов?

До какой степени макроокружение "стесняет" квантовые состояния наносистемы?

Необходимость конструктивного решения этих проблем ведет к интенсивным исследованиям, формирующим новые разделы в вычислительной физике и вычислительной химии. Выделим такие разделы в метрологии, механике, электродинамике, оптике, теории самоорганизации. В каждом из этих разделов обозначим несколько проблем.

Метрология

1. Создание компьютерных моделей систем "прибор-нанообъект" и их калибровка.

2. Автоматизация нанометровых измерений и создание банков данных.

Механика

1. Исследование механических напряжений и деформаций в наноматериалах и нанообъектах, анализ трения.

2. Моделирование движений зонда при целевом манипулировании нанообъектом.

3. Моделирование движений в наномеханизмах для наноустройств, расчет наноманипуляторов.

4. Разработка систем управления нанороботами.

Электродинамика

1. Моделирование динамики атомов и молекул в предельно неоднородных электромагнитных полях, создаваемых многоострийными системами.
2. Расчет электрических и магнитных свойств наноматериалов.

1. Моделирование механизмов излучения, распространения и поглощения света в нанообъектах.
2. Расчет нанолазеров и гибридных систем "зонды + нанолазер".

Теория самоорганизации

1. Формулировка фундаментальных принципов самосборки наноконструкций.

2. Создание компьютерных алгоритмов самосборки.

3. Разработка вычислительных алгоритмов для качественного анализа моделей самосборки.

4. Моделирование явлений пространственно-временной самоорганизации при создании наноматериалов.

Молекулярно-лучевая эпитаксия и нанолитография

1. Создание тонких металлических пленок, служащих основой высококачественных магнитных материалов.

2. Конструирование базовых элементов наноэлектроники.

3. Создание катализаторов для селективного катализа.

Хотелось бы еще раз подчеркнуть необходимость соблюдения строгого баланса между лабораторным экспериментом, теорией и математическим моделированием . Порой можно услышать высказывания о том, что прецизионный эксперимент в настоящее время очень дорог и его можно заменить более дешевым математическим моделированием. Существует и противоположная позиция, при которой принижается роль математических методов исследования. Простейшие примеры нетривиальных явлений в нанометровом диапазоне пространственных размеров демонстрируют полную несостоятельность радикальных позиций.

Явления пространственно-временной самоорганизации на поверхности монокристаллов металлов

Рассмотрим, с первого взгляда простейшую, но, как окажется, нетривиальную задачу. Предположим, что мы хотели бы вырастить высококачественную, однородную металлическую пленку, например пленку платины. Для этого следует взять плотно упакованную и пространственно однородную грань монокристалла в качестве подложки и напылить на нее слой атомов из кнудсеновской ячейки в условиях глубокого вакуума. Атомы вылетают из ячейки, адсорбируются на однородной поверхности, мигрируют вдоль нее и образуют новый слой. Как только первый слой сформировался, на нем образуется следующий слой, и так далее. Процесс определяется всего двумя внешними управляющими макропараметрами - температурой поверхности и потоком атомов к поверхности. Надо выбрать лишь температуру и скорость подачи атомов таким образом, чтобы за характерное время подачи нового атома атом, мигрирующий по поверхности, успел встроиться в растущий слой. Кажется, нет ничего проще, чем моделировать рост пленки в рамках моделей классической математической физики. Нужно описать лишь один процесс: поверхностную диффузию приходящих частиц. Для этого можно воспользоваться уравнением диффузии с постоянным источником в двухмерной пространственной области, дополнить его соответствующим граничным условием, например однородным граничным условием второго рода, и провести расчеты. Очевидно, что при достаточно быстрой миграции, независимо от начальных условий, с достаточно высокой точностью получится пространственно однородное решение, монотонно возрастающее по времени. Однако такое моделирование вовсе не описывает процесс роста нового слоя и его пространственную структуру.

Эксперимент, выполненный с помощью сканирующего туннельного микроскопа с гомосистемой Pt/Pt(111) 5 , показывает (рис. 9), что адсорбированные атомы платины мигрируют по поверхности грани (111) монокристалла платины, не подчиняясь закону Фика. Они образуют острова нового слоя с различной пространственной структурой в зависимости от значений температуры поверхности и скорости подачи атомов. Это могут быть рыхлые острова фрактальной структуры с фрактальной

Рис.9. Pt/Pt (111)

Рис. 10. Co/Re (0001): a - CoRe; b - Co 2 Re; с - Co 3 Re

размерностью 1.78 (рис. 9a), либо компактные острова с платоновыми формами в виде правильных треугольников (рис. 9b, 9d) и шестиугольников (рис. 9с), причем одинаково ориентированных относительно кристаллографических осей. Так, при температуре 400 К вершины треугольников смотрят "вниз" (рис. 9Ь). При температуре 455 К растущие острова принимают форму правильных шестиугольников (рис. 9с). При более высокой температуре снова образуется правильная треугольная форма островов, но на этот раз их вершины смотрят "вверх" (рис. 9d). Форма и ориентация треугольных островов являются устойчивыми. Дальнейшая подача атомов приводит к режиму трехмерного роста, в результате которого растущий слой всегда не однороден и имеет пирамидальную трехмерную структуру.

В связи с особенностями роста возникают, по крайней мере, два фундаментальных вопроса.

Как теоретически описать нетривиальное динамическое поведение простейшей системы?

Каковы способы управления системой для обеспечения послойного роста и получения высококачественного пространственно однородного слоя?

Аналогичные вопросы возникают и в гетеросистемах, когда на поверхности одного металла выращивают пленку другого металла. Так, в случае выращивания пленки серебра на платине можно наблюдать острова фрактальной и дендритной структур, острова в виде трехлучевой звезды фирмы "Мерседес" и другие явления пространственно-временной самоорганизации, сопровождающие неравномерный трехмерный рост тонкой пленки металла . В случае роста пленки кобальта на однородной грани (0001) монокристалла рения образуются поверхностные сплавы с различной стехиометрией и соответственно пространственной структурой: CoRe (рис. 10a), Co 2 Re (рис. 10Ь), Co 3 Re (рис. 10с) и нетривиальной поверхностной структурой . На иллюстрациях, представленных на рис. 10, видно, что крупные круги (атомы рения) окружены различным числом маленьких кругов (атомы кобальта). Эти сплавы имеют интересные магнитные свойства.

Нельзя не остановиться еще на одном парадоксальном явлении - аномально высокой подвижности больших компактных кластеров. Вслед за авторами замечательной экспериментальной работы рассмотрим компактный кластер правильной формы, состоящий из "магического" числа атомов иридия N = 1 + Зn(n - 1), n = 2, 3, ... , напримерN = 19, на поверхности плотно упакованной грани (111) иридия. Казалось бы, подвижность кластера, содержащего два десятка атомов, как целого, должна быть на много порядков меньше подвижности одиночного атома, так как миграция атомов представляется случайным процессом. В эксперименте установлено, что скорость миграции "правильных" кластеров сравнима со скоростью миграции одиночного атома! Это следствие коллективного движения атомов кластера требует детального теоретического описания и математического моделирования. Результаты такого анализа представляют значительный интерес при вычислении предэкспонент и эффективных энергий активации миграции для динамического метода Монте-Карло и для кинетических уравнений неидеального слоя. Зная реальные скорости миграции, можно правильно оценить время жизни наномеровых конструкций.

Нет надобности убеждать читателя в том, что перечисленные результаты лабораторного эксперимента демонстрируют необходимость развития классических моделей математической физики. При исследовании нанообъектов там, где это требуется, следует отказаться от идеи непрерывной среды, лежащей в основе подавляющего большинства моделей математической физики. Моделирование по инерции, без учета результатов лабораторного эксперимента, приводит к абсолютно неверным результатам. Так же очевидна потребность в новом современном курсе математической физики, учитывающем особенности нанообъектов. В этом курсе, в частности, следовало бы уделить внимание

Рис. 11. (CO + O 2)/Pt(210)

методам дискретной математики, перечислительной комбинаторики, теории групп.

Более сложные примеры нетривиального динамического поведения открытых неидеальных систем дают модельные реакции гетерогенного катализа на определенных гранях монокристаллов благородных металлов (Pt(111), Pt(100), Pt(110), Pt(210), Pd(111), Pd(110)) при низких парциальных давлениях в газовой фазе. Это реакции окисления монооксида углерода (СО) кислородом (О 2), а также редукция монооксида азота (NO) водородом (Н 2), аммиаком (NH 3) и монооксидом углерода. Перечисленные реакции играют существенную роль в экологической проблеме дожигания ядовитых выбросов (NO, CO и др.) двигателей внутреннего сгорания и тепловых электростанций. Исследования, выполненные в последние годы , открыли восхитительную нано- и мезодинамику этих систем. Обнаружены фазовые переходы типа порядок-беспорядок, сопровождающиеся образованием сверхструктур в монослое адсорбата, фазовые переходы типа расслоения на фазы, спонтанная и индуцированная адсорбатом реконструкция поверхности граней монокристаллов, коррозия катализатора. Процессы пространственно-временной самоорганизации, протекающие в нанометровой шкале размеров, тесно связаны с аналогичными явлениями, наблюдающимися с помощью эмиссионной фотоэлектронной микроскопии в микрометровом диапазоне. К таким явлениям относятся микрометровые спиральные, стоячие и триггерные 0олны, двойная метастабильность, химическая турбулентность. На рис, 11 представлены результаты исследования пространственно-временной самоорганизации в реакции окисления монооксида углерода на грани монокристалла Pt(210) методом эмиссионной фотоэлектронной микроскопии . В каждой рамке (380 х 380мm) показано пространственное распределение адсорбированных молекул СО (светлые области) и атомов кислорода (темные области) на поверхности катализатора для различных значений парциальных давлений СО и кислорода в газовой фазе при постоянной температуре поверхности. Отчетливо видны спиральные волны и автоволны фазового перехода типа расслоения на фазы, явления двойной метастабильности и т. п.

1 Размер атома составляет несколько десятых нанометра.

2 Описание приборов и принципов их действия содержится в .

3 Пара натуральных чисел (m, n) определяет вектор хиральности в плоскости графитового листа. Ось нанотрубки перпендикулярна вектору хиральности. Так, при (n, n) ((n, 0)) ось трубки параллельна (перпендикулярна) стороне правильного шестиугольника.

4 Аббревиатура BDC обозначает бензолдикарбоксил, a DMF - диметил-формамид.

5 Цифры в скобках обозначают индексы Миллера грани монокристаллической подложки .

В результате освоения материалов данного раздела студенты должны:

знать

  • основные понятия нанотехнологий, перспективы развития нанонауки и нанотехнологий;
  • технологии получения наночастиц;

уметь

Использовать наноматериалы и нанотехнологии в производстве современных и перспективных изделий;

владеть

  • навыками анализа результатов исследований в области нанотехнологий;
  • методами исследования наноматериалов.

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

История нанотехнологий. Основные понятия

Развитие этого нового направления в науке и технике уже стало во многих странах, в том числе и в России, приоритетной задачей. Для решения сложнейших проблем практической реализации открывающихся возможностей на основе нанотехнологий государства и бизнес выделяют огромные средства, создают специальные программы, проекты и научные координирующие центры но нанотехнологиям. В мире существенно возросло число научных публикаций по данному направлению. Сведения по наноматериалам и нанотехнологиям включены в учебные программы технических университетов, некоторые из них начали подготовку специалистов по новому интенсивно развивающемуся научному направлению, на базе которого уже в настоящее время получены удиви тельные результаты практически во всех сферах человеческой деятельности, а будущее обещает еще более разительные достижения, сравнимые с самыми фантастическими замыслами.

Очевидно, что обширная область науки и техники в XXI в. будет связана с понятием «нанотехнологии». Если слово «техно» в переводе с греческого (teche ) означает искусство, мастерство, ремесло, а «логия» (logos) - наука, то слово «нано» также греческого происхождения (nanos ) и означает карлик. Уже сейчас в ходу такие термины, как «нанофизика», «нанохимия», «нанопористые», «нанокристалл ические», «нанокомпозитные материалы» и др.

Действительно, нано означает всего одну миллиардную (10 9) долю метра - нанометр (нм). Представить эту величину можно только умозрительно. Например, 1 нм - это порядок размера атома, молекулы; нить такого размера в несколько десятков тысяч раз тоньше волоса человека.

Нанотехнология , таким образом, может быть определена как совокупность методов производства продуктов с заданной атомарной структурой путем манипулирования атомами и молекулами.

В то же время следует отметить, что терминология в области наноматериалов в определенной степени только складывается, устанавливается. Так, существует подход к определению наночастиц по их геометрическим параметрам. В частности, к наноструктурным относят частицы с размером 1 - 100 нм. Предел в 100 нм выбран исходя из того, что начиная с этого размера и ниже заметно проявляются особые физико-механические и химические свойства материала, в том числе прочность, твердость и т.д.

Существуют и другие подходы, учитывающие роль многочисленных поверхностей раздела, при этом принимается во внимание их объемная доля в общем количестве материала. Некоторые исследователи опираются в классификации наноматериалов на особые физические явления, проявляющиеся при определенном размере частиц. Однако наиболее распространенным, а значит принятым, является такое определение: наноматериалы - это материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками.

В литературе встречаются и другие термины: «ультрадиспсрс- ные материалы», «ультрадисперсные системы», «наноструктурные материалы», «нанокристаллические материалы».

Существующие наноматериалы можно условно разделить на несколько групп:

  • а) материалы (твердые тела) с размерами хотя бы по одной координате меньше 100 нм;
  • б) материалы в виде микроизделий размером от 1 мкм до 1 мм;
  • в) объемные наноматериалы с размерами в несколько миллиметров. Однако они состоят из наноразмерных элементов с размером зерна 1 - 100 нм;
  • г) композитные наноструктурированные материалы. В таких композитах модификаторами являются различного вида наночастицы.

История развития нанотехнологии может быть прослежена с глубокой древности. Действительно, само предположение, что все вещества состоят из мельчайшей частицы, называемой атомом, уже было необходимым шагом в последующей реализации идей нанотехнологии. И сделал это, введя понятие «атом», греческий философ Демокрит 2400 лет назад. Американский физик Ричард Фейнман (1959) обосновал идею создания вещественных объектов непосредственно из атомов, манипулируя ими. В 1974 г. японский физик Порио Тонигучи ввел в научный оборот понятие «нанотехника».

В России теоретические исследования в области нанотехнологий практически соответствовали международному уровню. Определенное отставание было в разработке отечественного прецизионного оборудования для исследований в данной области. Прогресс в ускоренном развитии нанотехнологий как раз и был связан с созданием уникальной техники, позволяющей изучать микромир с неведомыми до этого возможностями. Существовавшие даже самые мощные электронные микроскопы позволяли различать атомные решетки, но необходимо было увидеть атомы - только тогда можно было заниматься нанонаукой.

В 1981 г. Г. Бининг и Г. Рорср на основе так называемого туннельного эффекта построили сканирующий туннельный микроскоп (СТМ) и с его помощью получили изображение поверхности золота, кремния с атомным разрешением. СТМ снабжен тончайшей токопроводящей иглой-зондом. Зонд перемещается на расстоянии примерно 0,5 нм над изучаемой поверхностью. На зонд подается постоянное небольшое напряжение, благодаря чему возникает туннельный ток. Далее небольшое изменение расстояния между зондом и поверхностью исследуемого металла приводит к значительному изменению величины тока, что и характеризует чувствительность СТМ. Следящая система сканирует поверхность так, что зонд непрерывно отслеживает ее рельеф. Точность перемещений при сканировании достигает тысячных долей нанометра. Такая точность достигается применением специального механического манипулятора, изготовленного из пьезокерамического материала.

Сканирующий туннельный микроскоп оказался очень нужным и тонким инструментом для исследования наноразмерных объектов. За его изобретение в 1985 г. ученые были удостоены Нобелевской премии. Однако его можно было применять для исследования материалов, проводящих электрический ток, что являлось довольно серьезным ограничением для исследователей.

В 1986 г. в лаборатории IBM (отделение в Цюрихе, Швейцария) был создан микроскоп следующего поколения - атомно-силовой (ACM). Он основан на использовании межатомных связей. При движении зонда (алмазной иглы) над поверхностью исследуемого объекта возникает сила взаимодействия между зондом и поверхностью.

При приближении тончайшей иглы к атому сначала возрастают силы притяжения, а при дальнейшем сближении - даже отталкивания. Чуткие датчики передают этот эффект компьютеру, в котором сигнал преобразуется в видимое изображение. Такой микроскоп в отличие от ACM является универсальным средством изучения материалов; он нашел более широкое применение.

УДК 621.3.049.77

Ж.И.Алферов , акад. РАН, П.С.Копьев , д-р физ.-мат. наук, проф., Р.А.Сурис , чл. корр. РАН, Физико-технический институт им.А.Ф.Иоффе РАН (г. Санкт-Петербург);

A.Л.Асеев , чл.-корр. РАН, Институт физики полупроводников СО РАН (г. Новосибирск);

С.В.Гапонов , чл.-корр. РАН, Институт физики микроструктур РАН (г. Нижний Новгород);

B.И.Панов , д-р физ.-мат. наук, проф., МГУ им. М.В.Ломоносова (г. Москва),

Э.А.Полторацкий , д-р физ.-мат. наук, проф., ГНИИ физических проблем им. Ф.В.Лукина (г. Москва),

Н.Н.Сибельдин , д-р физ.-мат. наук, Физический институт им. П.Н.Лебедева РАН (г. Москва)

НАНОМАТЕРИАЛЫ И НАНОТЕХНОЛОГИИ

Дан краткий обзор сегодняшнего состояния и описаны некоторые перспективы в области наноматериалов и нанотехнологий. Изложены основные представления о полупроводниковых, магнитных и молекулярных наноструктурах, рентгеновских многослойных зеркалах, фуллереноподобных и конструкционных наноматериалах. Рассмотрено применение наноструктур в электронике и открывающиеся в связи с этим перспективы в информационных технологиях, технике связи и др. Описаны основы нано- и микроэлектромеханики: технологии, элементная база, приборы и системы. Рассмотрены методы диагностики наноструктур.

Введение

Физика низкоразмерных структур ‑ актуальнейшая и наиболее динамично развивающаяся область современной физики твердого тела. Интерес к этой области связан как с принципиально новыми фундаментальными научными проблемами и физическими явлениями, так и с перспективами создания на основе уже открытых явлений совершенно новых квантовых устройств и систем с широкими функциональными возможностями для опто- и наноэлектроники, измерительной техники, информационных технологий нового поколения, средств связи и пр. Результатом исследований низкоразмерных систем стало открытие принципиально новых, а теперь уже широко известных явлений, таких как целочисленный и дробный квантовый эффект Холла в двумерном электронном газе, вигнеровская кристаллизация квазидвумерных электронов и дырок, обнаружение новых композитных квазичастиц и электронных возбуждений с дробными зарядами, высокочастотных блоховских осцилляции, а также многое другое. Современные полупроводниковые лазеры на гетеропереходах также основаны на использовании низкоразмерных систем (структуры с квантовыми ямами, самоорганизованными квантовыми точками и квантовыми нитями). Наиболее выдающиеся достижения в этой области отмечены тремя Нобелевскими премиями по физике (1985 г. ‑ за открытие квантового эффекта Холла; 1998 г. ‑ за открытие дробного квантового эффекта Холла; 2000 г. ‑ за труды, заложившие основы современных информационных технологий).

Развитие этой области открыло возможности конструирования средствами зонной инженерии и инженерии волновых функций и последующего изготовления с помощью современных высоких технологий наноструктур (сверхрешетки, квантовые ямы, точки и нити, квантовые контакты, атомные кластеры и т.д.) с электронным спектром и свойствами, требуемыми для обнаружения и изучения новых физических явлений или для соответствующих приложений. Сконструированные таким образом наноструктуры являются, по существу, искусственно созданными материалами с наперед заданными свойствами.

Вне всяких сомнений, элементная база, основанная на использовании разнообразных низкоразмерных структур, является наиболее перспективной для электронной техники новых поколений. Однако при переходе к системам нанометрового масштаба начинает отчетливо проявляться квантовомеханическая природа квазичастиц в твердом теле. В результате возникает принципиально новая ситуация, когда квантовые эффекты (размерное квантование, конфайнмент, туннелирование, интерференция электронных состояний и др.) будут играть ключевую роль в физических процессах в таких объектах и в функционировании приборов на их основе.

Достижения в разработке и изготовлении наноструктур различного назначения в наибольшей степени определяются уровнем развития технологий, которые позволяют с атомной точностью получать наноструктуры необходимой конфигурации и размерности, а также методов комплексной диагностики свойств наноструктур, включая контроль в процессе изготовления (in situ) и управление на его основе технологическими процессами. По многим прогнозам именно развитие нанотехнологий определит облик XXI века, подобно тому, как открытие атомной энергии, изобретение лазера и транзистора определили облик XX столетия.

Ниже дан краткий обзор сегодняшнего состояния и некоторых перспектив в области наноматериалов и нанотехнологий, который, как мы надеемся, позволит получить общее представление об этой области. В настоящее время это весьма обширная область, включающая в себя целый ряд направлений физики, химии, биологии, электроники, медицины и других наук. Поэтому более подробное изложение потребовало бы значительно увеличения объема этой статьи.

Наноматериалы

Если при уменьшении объема какого-либо вещества по одной, двум или трем координатам до размеров нанометрового масштаба возникает новое качество, или это качество возникает в композиции из таких объектов, то эти образования следует отнести к наноматериалам, а технологии их получения и дальнейшую работу с ними ‑ к нанотехнологиям. Подавляющее большинство новых физических явлений на наномасштабах проистекает из волновой природы частиц (электронов и т.д.), поведение которых подчиняется законам квантовой механики. Проще всего это пояснить на примере полупроводников. Когда по одной или нескольким координатам размеры становятся порядка и меньше длины волны де Бройля носителей заряда ‑ полупроводниковая структура становится резонатором, а спектр носителей заряда ‑ дискретным. То же самое с рентгеновскими зеркалами. Толщины слоев, способных отражать в фазе рентгеновское излучение, лежат в нанометровом диапазоне. В других случаях возникновение нового качества может быть связано с менее наглядными явлениями. Представляется, что такой подход позволяет составить достаточно полное представление о наноматериалах и возможных областях их использования.

Полупроводниковые наноструктуры

Используя методы "зонной инженерии" и "инженерии волновых функций" можно конструировать квантоворазмерные структуры с заданным электронным спектром и требуемыми оптическими, электрическими и другими свойствами. Поэтому они очень удобны для приборных применений.

Квантовые ямы. Этим термином обозначаются системы, в которых имеется размерное квантование движения носителей заряда в одном направлении. Первоначально основные исследования квантовых ям проводились на инверсионных каналах кремниевых МОП транзисторов, позднее и до настоящего времени широко исследуются свойства квантовых ям в гетероструктурах. Основные физические явления в квантовых ямах: размерное квантование электронного спектра, квантовый эффект Холла (целочисленный и дробный), при специальном приготовлении очень высокая подвижность электронов. Основные методы получения квантовых ям на гетероструктурах: металлоорганическая газовая эпитаксия и молекулярно-пучковая эпитаксия.

Приборные применения: высокочастотные полевые транзисторы с высокой подвижностью электронов, полупроводниковые гетеролазеры и светодиоды от ближнего ИК до голубого света, лазеры дальнего ИК диапазона, параметрические источники света среднего ИК диапазона, фотоприемники среднего ИК диапазона, примесные фотоприемники дальнего ИК диапазона, приемники дальнего ИК диапазона на квантовом эффекте Холла, модуляторы в ближнем ИК диапазоне.

Квантовые проволоки ‑ это системы, в которых движение носителей заряда квантовано в двух направлениях. Первые квантовые проволоки выполнялись на основе квантовых ям посредством создания потенциального рельефа с помощью двух затворов, расположенных над квантовой ямой. Основные физические явления в квантовых проволоках: квантование проводимости, сильно коррелированный электронный транспорт. Основные методы получения квантовых проволок те же, что и квантовых ям, плюс использование прецизионного травления или специальных затворов. Приборных применений пока нет.

Квантовые точки ‑ нанообъекты, в которых движение носителей заряда квантовано во всех трех направлениях. Имеют дискретный энергетический спектр (искусственный атом). Основные физические явления в квантовых точках: одноэлектронные и однофотонные явления. Методы получения те же, что и для квантовых ям, однако несколько иные режимы, если происходит спонтанный рост квантовых точек по механизму Странски-Крастанова. Или использование прецизионной литографии для создания квантовых точек из квантовых ям.

Приборные применения: лазеры и светодиоды в ближнем ИК диапазоне, фотоприемники для среднего ИК диапазона, однофотонные приемники, однофотонные генераторы, одноэлектронные транзисторы.

Структуры с туннельно-прозрачными барьерами (системы квантовых ям и сверхрешетки). Основные физические явления в таких системах: резонансное туннелирование; формирование минизонного спектра в сверхрешетках ‑ периодических системах, содержащих много квантовых ям, разделенных туннельно-прозрачными барьерами; нелинейные электрические и оптические явления в сверхрешетках. Методы выращивания этих структур те же, что и для квантовых ям.

Приборные применения: резонансно-туннельные диоды (генераторы и смесители в гигагерцовом и терагерцовом диапазонах); мощные генераторы и смесители на сверхрешетках: каскадные лазеры среднего и дальнего ИК диапазонов.

Фотонные кристаллы ‑ системы, в которых имеется зонный спектр для фотонов. Основные физические явления: отсутствие пропускания (полное отражение) света в определенном диапазоне частот, резонансные фотонные состояния. Существует несколько методов выполнения фотонных кристаллов, но все они пока несовершенны.

Возможные приборные применения: эффективные лазеры с низкими пороговыми токами, системы управления световыми потоками.

Магнитные наноструктуры

Развитие методов напыления сверхтонких пленок и нанолитографии привело в последнее десятилетие к активному изучению магнитных наноструктур. Стимулом этой активности является идея о создании новых магнитных наноматериалов для сверхплотной записи и хранения информации. При этом предполагается, что каждая частица несет один бит информации. Если расстояние между частицами составляет 100 нм, то ожидаемая плотность записи – 10 Гбит/см 2 . Принципиальными ограничениями плотности записи при таком подходе являются магнитостатическое взаимодействие частиц и значительные термические флуктуации. Последние имеют существенную специфику для малых ферромагнитных частиц, которая проявляется в экспоненциальном росте вероятности распада намагниченного состояния с уменьшением размера частицы (суперпарамагнетизм).

Достижением в исследовании магнетизма наноматериалов следует признать открытие эффекта гигантского магнитосопротивления. Суть эффекта заключается в изменении сопротивления (порядка нескольких десятков процентов) многослойной структуры из сверхтонких ферромагнитных и диамагнитных слоев (например, Со /Cu ) при смене ферромагнитного упорядочения в структуре на антиферромагнитное. Можно сказать, что такие многослойные структуры представляют собой новый тип доменной структуры ферромагнетика, в котором роль доменов играют ферромагнитные пленки, а доменными стенками являются пленки диамагнетика. Этот эффект находит свое применение при создании новых датчиков магнитного поля, а также при разработке сред для сверхплотной записи информации.

Дальнейшее продвижение в область малых размеров привело к открытию нового явления ‑ туннелирования магнитного момента в сверхмалых ферромагнитных частицах. К этой группе наноматериалов относятся искусственные кристаллы, содержащие магнитные кластеры М n 12 и Fe 3 . Магнитный момент таких кластеров равен 10магнетонам Бора, т.е. занимает промежуточное положение между магнитным моментом атомов и макроскопических частиц. Обменное взаимодействие между кластерами в кристалле отсутствует, а магнитная анизотропия весьма высока. Таким образом, появляется возможность квантовых переходов между магнитными равновесными состояниями в кластерах. Изучение этих процессов представляется интересным и важным с точки зрения разработки элементной базы квантовых компьютеров.

Двумерные многослойные структуры из пленок нанометровой толщины

В данном случае рассматриваются такие комбинации материалов, которые обеспечивают наиболее сильное отражение электромагнитных волн. Длина волны излучения, эффективно взаимодействующего с многослойной структурой, и ее период связаны соотношением , где ‑ это угол скольжения падающего луча. Диапазон длин волн, в котором эффективно использование этих устройств, простирается от экстремального ультрафиолетового излучения (нм) до жесткого рентгеновского (нм), т.е. диапазон, в котором наиболее длинные волны в 6000 раз больше самых коротких. Для видимого света это соотношение равно ~2. Соответственно, столь же велико количество явлений природы, физические проявления которых находятся в этой спектральной области.

Структуры представляют собой искусственные одномерные кристаллы из пленок нанометровой толщины, и кроме возможности их использовать для управления излучением в зависимости от материалов слоев (диэлектрик, полупроводник, металл, сверхпроводник), они могут быть интересны и для других физических приложений. Так, если одним из материалов многослойных наноструктур служит сверхпроводник, то это система множественных последовательно включенных совершенно идентичных джозефсоновских переходов. Если металл чередуется с полупроводником ‑ это система последовательно включенных диодов Шоттки.

В наиболее коротковолновой части диапазона 0,01-0,02нм рентгеновские зеркала позволяют фокусировать излучение синхротронов или рентгеновских трубок на исследуемые объекты или формировать параллельные пучки. В частности, их применение увеличивает эффективность рентгеновских трубок в 30-100 раз, что делает возможным заменить синхротронное излучение в ряде биологических, структурных и материаловедческих исследований. Приблизительно в этом же диапазоне лежит излучение высокотемпературной плазмы (лазерной и ТОКАМАКов). Здесь зеркала нашли применение как дисперсионные элементы для спектральных исследований.

В диапазоне 0,6-6нм лежит характеристическое излучение легких элементов от бора до фосфора. Здесь рентгеновские зеркала также используются для исследования спектров в приборах элементного анализа материалов.

Рентгеновская многослойная оптика широко применяется для формирования фильтрации и управления поляризацией в синхротронных источниках. В области 10-60нм лежат линии излучения солнечной плазмы. Объективы космических телескопов из рентгеновских зеркал и сейчас находятся на орбите и регулярно передают на Землю изображение Солнца на линиях Fe IX‑Fe XI (17,5 нм) и Не II (30,4 нм).

Особое место занимает применение многослойных зеркал в технологиях микроэлектроники. Мы являемся свидетелями и участниками крупнейшего события в твердотельной электронике: это переход на длину волны более чем в 10 раз короче (от 157 нм к 13 нм) в литографии ‑ процессе, обеспечивающем получение рисунка полупроводниковых приборов и интегральных схем. Именно длина волны излучения, используемого для получения рисунка, отвечает за размеры его минимальных элементов. До сих пор изменение длины волны излучения от поколения к поколению литографических установок не превышало 25%. Одновременно в 10 раз повышаются требования к точности изготовления всех элементов оптики и механизмам настройки и экспонирования. Фактически это означает переход всех обрабатывающих технологий на атомарную точность. Неучастие в этом процессе может оставить страну в прошлой цивилизации.

Молекулярные наноструктуры

Органические материалы в последнее время интенсивно вовлекаются в нанотехнологии и как неотъемлемые участники технологическою процесса (например, в нанолитографии), и как самостоятельные объекты и устройства ‑ в так называемой молекулярной электронике.

Многообразие органического мира хорошо известно (около 2 млн синтезированных соединений, и это количество непрерывно растет) ‑ от "полунеорганических" комплексов (углеродные кластеры, металлоорганика) до биологических объектов (ДНК, гемы). С точки зрения материалов для нанотехнологии и молекулярной электроники условно можно выделить три основных класса: полимеры, молекулярные ансамбли (molecular assemblies, selfaggregated systems) и единичные молекулы: последние называются также "умные" или "функциональные" молекулы (smart molecules).

Первый класс изучается наиболее давно и по общей совокупности работ, наверное, наиболее интенсивно. Кроме того, диэлектрические, оптические и люминесцентные свойства различных поли- и олигомеров уже широко используют в технике и электронике, они стоят ближе всего к рынку и экономическому эффекту.

Второй класс ‑ молекулярные ансамбли нано-метровых размеров - изучается сравнительно недавно. К ним относятся, например, агрегаты на основе порфиринов (в том числе хлорофилла) и других амфифильных молекул, получаемые из растворов. Супрамолекулярная (то есть надмолекулярная, иерархическая) организация сложна и интересна, ее исследование и связь с (фото-) электрическими свойствами проливает свет на биологические и природные процессы (клеточный транспорт, фотосинтез). Обнаружена чувствительность, а главное ‑ уникальная избирательность таких систем к внешним воздействиям (свет, атмосфера, вибрация), что позволяет использовать их в различных сенсорах, в том числе со смешанной электронно-ионной проводимостью. Исследуются наноразмерные молекулярные стержни и проволоки (molecular rods and wires), в том числе в качестве интерфейса между неорганическими материалами (например, двумя металлическими электродами). Предполагается, что со временем будет происходить интегрирование с классической приборной базой.

Вообще системы, построенные в основном на Ван-дер-Ваальсовых или водородных связях, представляют собой очень перспективный с точки зрения дизайна твердого тела объект с двумя уровнями свободы: внутримолекулярная структура, которая может быть модифицирована (изменена при синтезе) и которая ответственна, например, за поглощение или испускание света; межмолекулярная структура, которая может быть изменена при росте кристалла (пленки, эпитаксиального слоя), и которая ответственна за фазовые явления, транспорт носителей заряда, магнитные свойства. В качестве примера: фталоцианин меди и периферийно-фторированный фталоцианин меди структурно изоморфны, однако представляют собой полупроводники - и -типа, соответственно. Полностью органические выпрямляющие переходы на основе вакуумно-осажденных слоев интенсивно исследуются в настоящее время. Вместе с тем, допирование пленок фталоцианина сильным акцептором (например, йодом) изменяет фазовую структуру вплоть до получения квазиодномерной металлической проводимости.

Важную группу составляют также самоорганизующиеся монослои (self-assembled monolayers, SAM"s) на основе органических молекул или цепочек различного строения, которые исследуют как перспективные передающие материалы при литографии, так и для изучения электропереноса вдоль контура сопряжения молекулы. Здесь уже начинается третий класс.

Третий класс или способ применения органических материалов в нанотехнологиях самый молодой. Это то, что в западных конкурсах называется emergent или futuristic technologies (внезапно возникающие или футуристические технологии). Если жидко-кристаллические дисплеи, технологии CD-R, фотопреобразователи, сенсоры и другие устройства на органических материалах хорошо известны и постепенно (хотя и медленно ‑ из-за понятного торможения со стороны уже широко инвестированного и раскрученного "силиконового" и GaAs-ного приоритета) приходят на рынок, то одномолекулярные устройства (приборы) в реальном производстве отсутствуют. Более того, если макроскопические свойства классических органических твердых тел (молекулярных кристаллов) имеют удовлетворительное теоретическое описание, то процессы, ожидаемые в одномолекулярных устройствах, видятся гораздо менее отчетливо. Самый упрощенный подход: берем некую молекулу, которая представляет собой хорошо организованную квантовую систему, делаем к ней электроды и получаем, например, диод. Тут сразу возникает много новых вопросов. В частности, граница металл/молекулярный полупроводник даже на макроуровне весьма неопределена.

И тем не менее истинно "наноразмерные" эффекты ожидаются именно в этом классе. Конструируются молекулярные наномашины и наномо-торы (роторы), динамические молекулярные переключатели, транспортировщики энергии, устройства распознавания, хранения информации. Для исследования инжекции носителей и туннельного тока в отдельных молекулах совершенствуются методы зондовой микроскопии.

Следует впрочем не забывать, что в числе главных достоинств (если не самые главных) органики находятся дешевизна и доступность. Изощренный синтез новых соединений делает их едва ли не дороже высокочистых неорганических веществ, поэтому наибольшие практические перспективы имеют исследование и модификация (оптимизация) широко распространенных и изученных (более или менее) соединений с высокой стабильностью и способностью интегрироваться (не обязательно) в разработанные технологические процессы. Из наиболее известных ‑ это фталоцианины, фуллерены, политиофены и полиарены.

Фуллереноподобные материалы

Графит, алмаз и не всеми признанный карбин в течение долгого времени считались основными аллотронными состояниями углерода. Их применяли во многих отраслях промышленности и техники, в том числе в микро- и оптоэлектронике. За 10 лет до конца XX века были обнаружены сначала в космосе, а потом получены в лаборатории новые молекулярные формы углерода ‑ фуллерены и фуллереноподобные индивидуальные вещества и материалы. В конце прошлого века по фуллеренам (их получению, исследованию и применению) каждый год выходило в свет до 1000 и более публикаций. Обнаружено, что самоорганизация фуллереновых структур происходит повсюду: в космосе, в природных процессах на Земле, в промышленных процессах (черная металлургия), в лабораториях. Свойства и структура этих материалов настолько разнообразны и интересны, что фуллереновые материалы начинают широко применять в промышленности: от микро- и наноэлектроники до эффективных медицинских препаратов.

К фуллереновым материалам, полученным и изучаемым в настоящее время, относятся следующие:

· Фуллерены. Они образуют молекулярно-кристаллические твердые тела, часто вследствие большого размера и высокой симметрии своих молекул ‑ пластические кристаллы без температуры плавления. Они образованы молекулами , имеющими форму либо сфер, либо эллипсов, хотя возможны их другие комбинации (полусферы с цилиндрами из углерода). Возможны многослойные сферы или эллипсы ("оолитовые" или "луковичные" структуры). Размер молекул главного представителя фуллеренов составляет 1 нм, и в растворе молекулы обладают свойствами броуновской частицы;

· Углеродные нанотрубки. Они образованы из свернутых по различным направлениям графитовых плоскостей и закрыты на концах сетчатыми углеродными полусферами. Такие "графитовые" нанотрубки могут быть однослойными и многослойными. Последние могут быть переведены окислением и травлением в однослойные. Углеродные нанотрубки могут иметь разветвления и изгибы. В этом случае они теряют исходную "графитовую" структуру и не называются "графитовыми". Однослойные нанотрубки имеют размеры от 1 до 10 нм в диаметре и длину 100-1000 нм и более, а многослойные имеют диаметры и длину в 10-100 раз больше. Твердые тела могут быть образованы из жгутов нанотрубок или коллинеарных (но более коротких) образований;

· Наполненные фуллерены (эндо-производные). Наполнением могут быть молекулы инертных или других газов, небольшие органические и неорганические молекулы, атомы металлов (щелочных, щелочноземельных, лантанидов и др.). Несмотря на трудности получения и малый выход таких производных, присущие им свойства заставляют исследовать их синтез и возможные применения. Эти производные в большинстве своем имеют крайне низкие потенциалы ионизации по сравнению с металлами, и, по-видимому, обладают металлическими свойствами;

· Наполненные углеродные нанотрубки. Помимо перечисленного выше для наполнения могут быть использованы фуллерены меньшего диаметра;

· Неорганические нанотрубки (, и др.).

Патентная литература и применения фуллереноподобных материалов чрезвычайно разнообразны. Фуллереноподобные материалы обладают рядом замечательных характеристик, включая химическую стойкость, высокую прочность, жесткость, ударную вязкость, теплопроводность и (что, возможно, важнее всего) электропроводность. В зависимости от тонких особенностей молекулярной симметрии фуллерены и нанотрубки могут быть диэлектриками, полупроводниками, обладать металлической проводимостью и высокотемпературной сверхпроводимостью. Эти свойства в сочетании с наномасштабной геометрией делают их почти идеальными ‑ возможно даже уникальными ‑ материалами для изготовления электрических проводов, сверхпроводящих соединений или целых устройств, которые с полным основанием можно назвать изделиями молекулярной электроники. Химической сборке элементов различных схем благоприятствуют свойства фуллерена, который может образовывать ионы от +6 до ‑6 и в различных матрицах ‑ связи с донорами, акцепторами, свободными радикалами и ионами. Фуллерены могут также использоваться при создании средств молекулярной оптоэлектроники для фемтосекундной оптоволоконной передачи информации. Полимеризация фуллеренов при электроннолучевом или ионизирующем воздействии дает возможность получать резисты нового поколения.

Углеродные нанотрубки используются в качестве игольчатых щупов сканирующих зондовых микроскопов и в дисплеях с полевой эмиссией, в высокопрочных композиционных материалах, электронных устройствах со схемами из коротких нанотрубок, подвергнутых манипулированию и сборке. Молекулярный характер фуллереновых материалов позволяет разработать химическую стратегию сборки этих элементов в пригодные для использования структуры, материалы и возможно даже молекулярные электронные устройства.

Конструкционные наноматериалы

Использование современных конструкционных материалов обычно ограничивается тем, что увеличение прочности приводит к снижению пластичности. Данные по нанокомпозитам показывают, что уменьшение структурных элементов и более глубокое изучение физики деформационных процессов, которые определяют пластичность наноструктурных материалов, могут привести к созданию новых типов материалов, сочетающих высокие прочность и пластичность.

Анализ проведенных в последние годы отечественных и зарубежных исследований свидетельствует о высокой перспективности следующих основных направлений в области разработки конструкционных материалов: изготовление наноструктурных керамических и композиционных изделий точной формы, создание наноструктурных твердых сплавов для производства режущих инструментов с повышенной износостойкостью и ударной вязкостью, создание наноструктурных защитных термо- и коррозионно-стойких покрытий, создание обладающих повышенной прочностью и низкой воспламеняемостью полимерных композитов с наполнителями из наночастиц и нанотрубок.

В лабораторных исследованиях получены образцы изделий из нанофазной керамики (плотности на уровне 0,98-0,99 от теоретического значения) на основе оксидов алюминия и ряда переходных металлов. Экспериментально подтверждено, что плотная наноструктурная керамика имеет повышенную пластичность при сравнительно невысоких температурах. Увеличение пластичности при уменьшении размера частиц вызвано сдвиговым перемещением нанокристаллических зерен относительно друг друга при наложении нагрузки. При этом отсутствие нарушения межзеренной связи объясняется эффективным диффузионным переносом атомов в приповерхностном слое частиц. В перспективе повышенная пластичность означает возможность сверхпластичного формования керамических и композиционных изделий, что исключает необходимость трудо- и энергозатратной финишной обработки материалов высокой твердости.

В последние годы разработаны нанокомпозитные металлокерамические материалы, в частности, на основе и , значительно превосходящие по износостойкости, прочности и ударной вязкости аналоги с обычной микроструктурой. Повышенные эксплуатационные характеристики нанокомпозитных материалов обусловлены образованием при спекании специфических непрерывных нитевидных структур, формирующихся в результате трехмерных контактов между наночастицами разных фаз. Разработка и внедрение в промышленное производство технологии создания нанокомпозитных изделий будет способствовать решению проблемы изготовления высококачественных режущих инструментов.

Повышение коррозионной стойкости наноструктурных покрытий обусловлено, в первую очередь, снижением удельной концентрации примесей на поверхности зерен по мере уменьшения их размеров. Более чистая поверхность обеспечивает более однородную морфологию и более высокую коррозионную стойкость межзеренных границ. Наноструктурные покрытия характеризуются сверхвысокой прочностью. Один из основных механизмов упрочнения обусловлен эффектом скопления дислокаций вблизи препятствий, которыми при уменьшении размеров зерен являются их границы. Важным преимуществом покрытий с наноразмерной структурой является обусловленная повышенной пластичностью возможность снижения в них остаточных напряжений, что позволяет изготовлять покрытия миллиметровой толщины.

Использование диспергированных в полимерной матрице неорганических наполнителей из наноразмерных порошков позволяет существенно повысить огнестойкость пластмасс, являющуюся одним из основных недостатков при использовании их в качестве конструкционных материалов, поскольку продукты сгорания полимеров, как правило, представляют собой ядовитые вещества. Результаты исследований показывают, что снижение горючести может быть доведено до самозатухания пламени. При этом наноразмерные порошковые наполнители не снижают механической прочности и обрабатываемости материалов. Полимерные нанокомпозиты обладают высокой абляционной стойкостью, что открывает перспективы их использования для защиты поверхности изделий, эксплуатируемых в условиях воздействия высоких температур.

Наноэлектроника

Современный научно-технический прогресс несомненно определяется развитием электроники, основой которой являются достижения в различных областях фундаментальных наук, главным образом, физики твердого тела, физики полупроводников, а также твердотельной технологии. Последние достижения науки показывают, что в отличие от традиционной микроэлектроники, потенциальные возможности которой в ближайшее десятилетие, по-видимому, будут исчерпаны, дальнейшее развитие электроники возможно только на базе принципиально новых физических и технологических идей.

Так, на протяжении ряда десятилетий повышение функциональной сложности и быстродействия систем достигалось увеличением плотности размещения и уменьшением размеров элементов, принцип действия которых не зависел от их масштаба. При переходе к размерам элементов порядка десятков или единиц нанометров возникает качественно новая ситуация, состоящая в том, что квантовые эффекты (туннелирование, размерное квантование, интерференционные эффекты) оказывают определяющее влияние на физические процессы в наноструктурах и функционирование приборов на их основе.

Многообещающим является также создание наноструктур, в которых роль функциональных элементов выполняют отдельные молекулы. В перспективе это позволит использовать принципы приема и переработки информации, реализуемые в биологических объектах (молекулярная наноэлектроника). Новые возможности в повышении мощности, температурной и радиационной стойкости, расширении диапазона частот, улучшении эргономических характеристик приборов открывает направление, в котором синтезируются идеи и технологические достижения вакуумной и твердотельной электроники (вакуумная наноэлектроника).

Создание наноструктур базируется на новейших технологических достижениях в области конструирования на атомном уровне твердотельных поверхностных и многослойных структур с заданным электронным спектром и необходимыми электрическими, оптическими, магнитными и другими свойствами. Требуемая зонная структура таких искусственных материалов обеспечивается выбором веществ, из которых изготовляются отдельные слои структуры ("зонная инженерия"), поперечных размеров слоев (размерное квантование), изменением степени связи между слоями ("инженерия волновых функций"). Наряду с квантово-размерными планарными структурами (двумерный электронный газ в квантовых ямах, сверхрешетки) исследуются одно- и нульмерные квантовые объекты (квантовые нити и точки), интерес к которым связан с надеждами на открытие новых физических явлений и, как следствие, на получение новых возможностей эффективного управления электронными и световыми потоками в таких структурах.

Нанотехнологии призваны решить следующие задачи в электронике:

· резкое повышение производительности вычислительных систем;

· резкое увеличение пропускной способности каналов связи;

· резкое увеличение информационной емкости и качества систем отображения информации с одновременным снижением энергозатрат;

· резкое повышение чувствительности сенсорных устройств и существенное расширение спектра измеряемых величин, что важно, в частности, для задач экологии;

· создание высокоэкономичных твердотельных осветительных приборов;

· существенное увеличение удельного веса использования электронных и оптоэлектронных компонентов в медицинских, биологических, химических, машиностроительных и других технологиях.

Резкое повышение производительности вычислительных систем необходимо в связи с переходом технологии интегральных схем к нанометровому масштабу. В табл. 1 приведен прогноз уменьшения характерных размеров ИС памяти и процессоров (I TRS Roadmap 2002), в табл. 2 ‑ перспектива уменьшения энергии на одно переключение.

Таблица 1

Year of production, нм

2003

2010

2013

2016

DRAM

1/2 Pitch

1/2 Pitch

Printed Gate Length

Physical Gate Length

Таблица 2

Год

2003

2010

2013

2016

Энергия на переключение, фемтоДж

Таким образом, развитие "традиционной микроэлектроники" подразумевает переход к нанотехнологии. Развитие нанотехнологии позволит сконструировать и принципиально новые элементы ИС, такие, например, как "одноэлектронные" устройства, потребляющие предельно малые энергии на переключение, или сверхбыстродействующие биполярные транзисторы с базами толщиной в несколько нанометров. Устройства на основе наноструктур принципиально необходимы и для считывания информации в вычислительном процессе из-за предельно низких уровней сигналов. Примером могут служить магнитные считывающие устройства, основанные на эффекте гигантского магнетосопротивления, возникающем в слоистых металлических магнитоупорядоченных средах с толщиной слоев в несколько нанометров.

Резкое увеличение пропускной способности каналов связи подразумевает создание высокоэффективных излучающих и фотоприемных устройств для ВОЛС и устройств СВЧ техники для терагерцового и субтерагерцовых диапазонов. Сразу же следует подчеркнуть, что эффективные лазерные диоды для линий связи есть типичный продукт нанотехнологии, поскольку они представляют собой квантово-размерные наногетероструктуры с характерной толщиной слоев в несколько нанометров. Эффективные фотоприемные устройства также базируются на таких полупроводниковых гетероструктурах. Дальнейшее развитие излучающих и фотоприемных приборов с неизбежностью связано с развитием нанотехнологии квантовых точек ‑ нанообластей в полупроводнике, ограничивающих движение электронов в трех направлениях. Здесь можно ожидать появления устройств принципиально нового типа, использующих квантовомеханические закономерности.

То же относится и к твердотельным устройствам СВЧ электроники. Переход на наноуровень позволит существенным образом улучшить характеристики СВЧ транзисторов и создать приборы, основанные на квантовомеханических эффектах (например, резонансно-туннельные диоды и приборы на основе сверхрешеток).

Резкое увеличение информационной емкости и качества систем отображения информации с одновременным снижением энергозатрат связано с развитием нескольких направлений. Прежде всего, это монолитные и гибридные матрицы светоизлучающих диодов (когерентных и некогерентных). И здесь наиболее эффективны и многофункциональны полупроводниковые источники на основе наноструктур. Полупроводниковые лазеры средней и большой мощности, изготовленные на основе наноструктур, эффективны для использования в проекционных системах различного назначения (в т.ч. для проекционных телевизоров). Наноструктурированные материалы (например, на основе углеродных нанотрубок) чрезвычайно перспективны при создании эффективных катодов для плазменных панелей любой площади.

Резкое повышение чувствительности сенсорных устройств и значительное расширение спектра измеряемых величин как путем улучшения характеристик уже существующих приборов и устройств при переходе к размерам, при которых становятся существенными квантово-механические эффекты, так и за счет создания принципиально новых приборов, основанных на возможности "калибровать" различные объекты (атомные кластеры и молекулы) в нанометровом диапазоне размеров и использовать высокую поверхностную чувствительность наноструктурированных материалов. Примером использования нанотехнологии для этих целей может служить создание на основе квантовых полупроводниковых наноструктур лазеров дальнего и среднего ИК диапазонов, позволяющих контролировать загрязнение атмосферы с высокой чувствительностью и точностью.

Создание высокоэкономичных твердотельных осветительных приборов ‑ важнейшая задача современного общества. На освещение сейчас расходуется около 20% потребляемой в мире энергии и перевод хотя бы половины освещения на высокоэкономичные полупроводниковые источники света на основе наноструктур уменьшит мировые затраты энергии на 10%.

Существенное увеличение удельного веса использования электронных и оптоэлектронных компонентов в медицинских, биологических, химических, машиностроительных и других технологиях. Здесь важно иметь в виду несколько обстоятельств. Прежде всего, благодаря возможности создавать с помощью нанотехнологии вещества и структуры с наперед заданным оптическим спектром можно "настраивать" источники и приемники излучения, что позволяет селективно воздействовать на биологические и химические процессы и получать сигналы в необходимых спектральных диапазонах для контроля таких процессов. Другое важное обстоятельство состоит в том, что именно благодаря применению наноструктур удается использовать очень компактные мощные источники лазерного излучения. Это позволит развить высокоточные, экономичные и экологически чистые технологии обработки материалов. Подчеркнем, что эти же источники очень эффективны для применения в медицине.

Hано- и микроэлектромеханика

Актуальность направления

Прогресс в разработке нано- и микроэлектромеханических устройств и систем обещает такую же революцию в технике, какую совершила микроэлектроника в электронике. Микроэлектромеханика стала самостоятельным направлением 15-20 лет назад. Основой этого направления являются объединение поверхностной микрообработки, развитой в микроэлектронной технологии, с объемной обработкой и использование новых материалов и физических эффектов. Бурный рост микроэлектромеханики, являющейся, по сути, междисциплинарным направлением, связан, прежде всего, с широким использованием микроэлектронных технологий с сотовой микроструктурой. Такой подход позволил за короткое время создать новые объемные конструктивные элементы ‑ мембраны, балки, полости, отверстия с большим аспектным соотношением (калибром), за счет использования так называемых LiGA-технологий на основе синхротронного излучения и т.д. Это обеспечило прорыв в области микродвигателей микророботов, микронасосов для микрофлюидики, сверхчувствительных сенсоров различных физических величин (давления, ускорения, температуры и др.), микрооптики. Так, микромеханические датчики в современных автомобилях являются основой систем безопасности (воздушные подушки), контроля за состоянием колес, подвески и т.п. Но наиболее ярким представителем микроэлектромеханических систем служат сканирующие зондовые микроскопы, являющиеся основой не только ряда измерительных систем в нанометровом диапазоне, но и основой технологических устройств для нанотехнологии.

Переход к наноэлектромеханике связан с использованием нанотехнологии и новых физических эффектов. Так, при создании полостей ‑ важного компонента различных устройств - используются все в большей мере самоорганизующиеся процессы (углеродные нанотрубки, пористые мембраны на основе оксида алюминия). Это позволяет увеличить воспроизводимость, повысить надежность, поскольку малейшие изменения размеров, связанные с использованием традиционных технологий, ведут к экспоненциально сильному изменению параметров.

В развитых зарубежных странах этому направлению уделяется большое внимание ‑ создаются исследовательские институты, развернута подготовка специалистов. В США этими вопросами занимаются такие известные фирмы, как Intel, MEMS Industry Group, Sandia National Labs. Рассматриваемый круг вопросов ‑ от ручки без разбрызгивания чернил до беспроволочной передачи данных, оптических устройств управления оружием и миниспутников. Агентство перспективных разработок МО США реализует программу "Умная пыль", направленную на создание сверхминиатюрных устройств, способных генерировать энергию, проводить мониторинг окружающей среды, накапливать и передавать информацию.

Таким образом, развитие нано- и микроэлектромеханики является необходимым условием развития основ нанотехнологии.

Технологические аспекты разработки нано- и микроэлектромеханических систем

Наноимпринтинг (печать с помощью штампа). Это развиваемые взамен оптической литографии новые групповые технологии получения рисунка с рекордным разрешением нм. Технологии позволяют реализовать как получение маски для дальнейших технологических операций, так и функциональных структур.

Интеллектуальные нанотехнологтеские комплексы на базе сканирующей зондовой техники . Высоковакуумные комплексы, обеспечивающие локальную модификацию поверхности (фазового состава, потенциального и пространственного рельефа, структурной перестройки) в областях нм. Модификация осуществляется за счет полевых, механических и тепловых воздействий, а также за счет ввода реактивных сред непосредственно в область воздействия под зондом. Для повышения производительности необходимы многозондовые картриджи и устройства прецизионного многократного позиционирования (с точностью нм).

Технологии самоорганизации и самосборки. При уменьшении размеров нм создание упорядоченных структур и одиночных структур традиционными методами становится труднореализуемой задачей. Особенно важны с этой точки зрения различные формообразующие структуры (полости), в которых можно создавать наноэлементы. Важную роль играют также технологии получения упорядоченных нанотрубок (особенно углеродных) и пористых мембран на основе оксида алюминия.

Технология получения рисунка на базе сканирующей зондовой микроскопии с разрешением нм за счет использования в качестве зондов углеродных нанотрубок и прецизионных позиционеров.

Разработка элементной базы нано- и микроэлектромеханики

Наноэлементы для прямого преобразования электрической энергии в механическую с высокой эффективностью . Статические элементы на основе ориентированных пучков нанотрубок во много раз эффективнее пьезоэлектрических и могут работать, например, в физиологическом растворе. Динамические элементы на базе нанотрубок обеспечивают коммутацию в пикосекундном диапазоне. Однослойные нанотрубки с большим аспектным соотношением могут перемещаться в жидких средах за счет волнообразного движения. Все это открывает большие перспективы как для технических, так и для биомедицинских применений.

Заполнение нанополостей (в том числе нанотрубок) чужеродными атомами, молекулами, кластерами, фуллеренами позволяет не только изменять характеристики элементов, но и создавать одномерные кристаллы, хранить и доставлять определенные компоненты в нужное место для создания новых элементов с помощью зондовых технологий. Заполнение двумерных и трехмерных нанопористых сред позволяет создавать фотонные кристаллы ‑ основу для оптических коммутирующих устройств "беспороговых" лазеров, сверхчувствительных фотоприемников. Большой интерес для медицины представляет прививка к нанотрубкам органических комплексов и ДНК.

Сверхчувствительные сенсоры без промежуточного преобразования энергии . Они могут быть созданы, поскольку частотный диапазон механических колебаний наноэлементов близок к вращательному и колебательному спектрам молекул.

Эффекты автоэмиссии наряду с квантовомеханическими эффектами, связанными с переносом зарядов, играют все большую роль в таких наноэлементах. Так, пороги автоэмиссии для нанотрубок на несколько порядков ниже, чем в традиционных элементах. Это открывает возможности создания наноламп, скомбинированных с нанотранзисторами, что важно для устройств обработки информации, эксплуатирующихся в экстремальных условиях и условиях спецвоздействий.

Наноэлектромеханические приборы и системы

Наноэлектромеханические ЗУ терабитной емкости . Матричные многозондовые сканирующие устройства в сочетании с регулярными средами из наноэлементов позволяют создать терабитные ЗУ с плотностью до 10 бит/см 2 , что необходимо для систем обработки информации новых поколений.

Микро- и нанооптоэлектромеханические системы . Управляемые микромеханические зеркальные отражатели и дифракционные решетки обеспечивают коммутацию и селекцию сигналов при беспроволочной передаче данных, в системах управления оружием, микророботами и т.д. со скоростью передачи 10 12 бит/с.

Микроробототехника . Создание микроустройств, способных передвигаться, собирать, хранить и передавать информацию, осуществлять определенные воздействия по заложенной программе или команде. Разработка микродвигателей, микронасосов, микроприводов.

Нано- и микроэлектромеханические датчики различных физических величин (ускорения, давления, температуры, влажности, изменения размеров, скорости протекания химических и физических процессов).

Гибкие плоские дисплеи и устройства отображения информации.

Важнейшие области применения

Такими областями применения нано- и микроэлектромеханических устройств и систем могут быть:

· информационные и компьютерные технологии;

· машиностроение;

· биология и медицина;

· наносистемы для вредных производств, ядер ной энергетики;

· наносистемы для систем вооружения и космических систем.

Диагностика наноструктур

Современное развитие физики и технологии твердотельных наноструктур, проявляющееся в непрерывном переходе топологии элементов электронной техники от субмикронных размеров к нанометровой геометрии потребовало разработки новых и усовершенствования существующих диагностических методов, а также создания новых образцов оборудования для анализа свойств и процессов в низкоразмерных системах, в наноматериалах и в искусственно создаваемых наноструктурах. В этом плане особое внимание уделяется созданию и применению взаимодополняющих высокоразрешающих методов практической диагностики и характеризации наноструктур, обеспечивающих получение наиболее полной информации об основных физических, физико-химических и геометрических параметрах наноструктур и протекающих в них процессов.

В настоящее время существует огромное число методов диагностики, еще больше методик исследования физических и физико-химических параметров и характеристик твердотельных и молекулярных структур. Вместе с тем, получение наноструктур, низкоразмерных систем и новых наноструктурированных материалов с заданными свойствами, предназначенных для применения в современной электронике, ставит и новые диагностические задачи. Для решения современных задач диагностики наноструктур требуется адаптация к этим задачам традиционных методов (оборудования), а также развитие новых, прежде всего локальных (до масштабов 0,1 нм) методов исследования и анализа свойств и процессов, присущих объектам нанометровой геометрии и системам пониженной размерности.

Методы нанодиагностики должны быть по возможности неразрушающими и давать информацию не только о структурных свойствах нанообъектов, но и об их электронных свойствах с атомным разрешением. Для разработки нанотехнологий решающим оказывается также возможность контролировать атомные и электронные процессы in situ с высоким временным разрешением, в идеале до времени, которое равно или меньше периода атомных колебаний (до 10 ‑13 с и менее). Необходима также диагностика электронных, оптических, магнитных, механических и иных свойств нанообъектов на "наноскопическом" уровне. Невозможность полного удовлетворения этих требований приводит к использованию комплекса методов диагностики нанообъектов, среди которых необходимо выделить следующие основные группы методов:

· электронная микроскопия высокого разрешения, которая исторически явилась первым методом, реально обеспечивающим визуализацию структуры объектов с атомным разрешением. К этому методу примыкают различные модификации электронной микроскопии, обеспечивающие проведение химического анализа нанообъектов, исследования in situ, поверхностно-чувствительные методы, такие как отражательная электронная микроскопия, микроскопия медленных электронов и другие. Во многих случаях электронная микроскопия высокого разрешения является единственным источником по лучения информации о внутренней структуре и структуре границ раздела таких нанообъектов, как квантовые ямы и квантовые точки;

· методы сканирующей электронной микроскопии, которые вплотную приближаются по разрешению к атомному разрешению, сохраняя возможность получения информации без существенного (разрушающего) воздействия на исследуемые объекты с получением разнообразной информации о химическом составе нанообъектов, их электрических (метод наведенного тока), оптических (катодолюминесценция) и других свойствах. Для получения информации об объеме нанообъектов развиты методы электронной томографии;

· сканирующая туннельная микроскопия, являющаяся поверхностно-чувствительным методом визуализации атомной структуры твердых тел; проведение спектроскопических исследований с атомным разрешением вместе с привлечением возможностей для in situ экспериментов при повышенных и пониженных температурах, использование других методов зондовой микроскопии и возможности манипулирования на уровне отдельных атомов делает эти методы важнейшим инструментом для нанотехнологий и нанодиагностики;

· рентгендифракционные методы, особенно с использованием высокой светимости синхротронных источников, они дают уникальную информацию об атомной структуре нанообъектов без их разрушения;

· методы электронной спектроскопии для химического анализа, ожеэлектронной спектроскопии, методы фотоэлектронной спектроскопии, романовской и ИК-спектроскопии, метод фотолюминесценции, которые активно развиваются с повышением разрешающей способности, что делает эти методы весьма полезными при диагностике нанообъектов.

Дальнейшее развитие всевозможных методов диагностики (в частности, диагностики, встроенной в технологию), учитывающих специфику нанообъектов и их характерные размеры, является неотъемлемой частью развития высоких технологий получения и анализа свойств наноструктур нового поколения. При этом формирование комплексных методов практической диагностики диктуется как технологическими задачами получения наноструктур и создания на их базе следующего поколения электронных и оптических устройств (транзисторов, лазеров и др.), так и их специфическими физическими, физико-химическими и топологическими свойствами, часто не укладывающимися в рамки стандартных представлений о свойствах вещества.

Заключение

В заключение необходимо еще раз подчеркнуть, что развитие науки о наноструктурах и, прежде всего, о квантовых наноструктурах (нанофизики) и нанотехнологий даст возможность получения наноматериалов с качественно новыми свойствами. Развитие наноэлектроники и наномеханики послужит основой качественно нового этапа в разработке новейших информационных технологий, средств связи, в решении проблем качественно нового уровня жизни и пр. Успех в развитии этих направлений определится, по сути, решением двух основных проблем: разработка надежных способов создания наноматериалов и нанообъектов с требуемыми свойствами, включая использование методов поатомной сборки и эффектов самоорганизации; разработка новых и развитие существующих методов нанодиагностики с атомным разрешением. Современный прогресс в области нанотехнологий позволяет надеяться, что уже в недалеком будущем многие проблемы будут решены.