» » Молекулярно генетический уровень организации организма человека. Молекулярно-генетический уровень - лекции по концепциям современного естествознания

Молекулярно генетический уровень организации организма человека. Молекулярно-генетический уровень - лекции по концепциям современного естествознания

Теория Эволюции

Методические указания к лабораторным занятиям

для студентов агрономического факультета

Миасское

Методические указания к выполнению лабораторных занятий предназначены для студентов агрономического факультета обучающихся по направлению 35.03.04 «Агрономия», 35.03.07 «Технология производства и переработки сельскохозяйственной продукции» на очной и заочной формах обучения с целью освоения дисциплины «Теория эволюции».

Составитель:

Матвеева Е. Ю. – канд. биол. наук (Институт агроэкологии – филиал ФГБОУ ВО ЮУрГАУ)

© Южно-Уральский государственный аграрный университет, 2016

© Институт агроэкологии, 2016

Структура и оценивание отчета по лабораторному занятию……………….4

Свойства и уровни организации живой материи………………….………….5

Моделирование эволюции………………………………………….…………24

Эволюционные взгляды ученых………………………………….…………..26

Эволюционные теории Ж. Б. Ламарка и Ч. Дарвина………….…………….79

Основные этапы развития органического мира……………….…………….90

Эволюция организмов как адаптациогенез…………………………………108

Генетические основы эволюции……………………………………………..118

Факторы макроэволюции……………………………………………………..128


Структура и оценивание отчета по лабораторному занятию

Отчет по лабораторному занятию используется для оценки качества освоения студентом образовательной программы по темам дисциплины. Отчет оценивается оценкой «зачтено», «не зачтено» (таблица 1).

Таблица 1 – Критерии оценивания отчета

1 Тема лабораторного занятия

2 Выполненные задания

3 Ответы на контрольные вопросы


Свойства и уровни организации живой материи

Введение

Органический мир представляет собой единое целое, т. к. составляет систему взаимосвязанных частей (в которых существование одних организмов зависит от других), и в то же время дискретен (состоит из отдельных единиц – организмов, или особей). Каждый живой организм также дискретен, так как состоит из отдельных органов, тканей, клеток, но вместе с тем каждый из органов, обладая определенной автономностью, действует как часть целого. Каждая клетка состоит из органоидов, но функционирует как единое целое. Наследственная информация осуществляется генами, но ни один из генов вне всей совокупности не определяет развитие признака и т. д.

С дискретностью жизни связаны различные уровни организации органического мира, которые можно определить как дискретные состояния биологических систем, характеризующихся свойствами соподчиненности, взаимосвязанности, специфическими закономерностями. При этом каждый новый уровень отличается особыми свойствами и закономерностями прежнего, низшего уровня, поскольку каждый организм, с одной стороны, состоит из подчиненных ему элементов, а с другой – сам является элементом, входящим в состав какой-то макробиологической системы. На всех уровнях жизни проявляются такие ее атрибуты, как дискретность и целостность, структурная организация, обмен веществом, энергией и информацией. Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня. Характер клеточного уровня организации определяется молекулярным и субклеточным уровнями, организменный – клеточным, тканевым и т. д.

Структурные уровни организации жизни чрезвычайно многообразны, но из всего их многообразия основными являются молекулярно-генетический, онтогенетический, популяционно-видовой и биосферный.

Молекулярно-генетический уровень жизни

Для нормального жизненного цикла любому организму необходим определенный набор основных химических элементов. Этот набор включает в себя три группы элементов: макроэлементы, микроэлементы и ультрамикроэлементы.

К макроэлементам, которые называют, органогенами относятся четыре элемента – углерод, кислород, азот и водород. Эти элементы составляют основную массу органического вещества клетки (95–99%).

К макроэлементам относят также калий, натрий, кальций, магний, фосфор, серу, хлор и железо, количество которых в клетке колеблется от десятых до сотых долей процента (1,9%).

Микроэлементами называют такие элементы, которые присутствуют в живых тканях в очень малых концентрациях (0,001% до 0,000001%). Эту группу составляют: марганец, железо, кобальт, медь, цинк, ванадий, бор, алюминий, кремний, молибден, йод (.01%). Входят в состав биологически активных веществ – ферментов, витаминов, гормонов.

Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0,000001%. Эту группу составляют золото, уран, радий и др.

Таким образом, для нормальной жизнедеятельности живая клетка нуждается в 24 природных химических элементах, каждый из которых имеет свое назначение, всего в клетках обнаружено 80 элементов.

Основными органическими веществами клетки являются углеводы, липиды, аминокислоты, белки, нуклеиновые кислоты.

К углеводам относят соединения углерода, которые подразделяют на три группы сахаридов. Углеводы играют важную роль в жизни организмов: они являются компонентом соединительной ткани позвоночных животных, обеспечивают свертывание крови, восстановление поврежденных тканей, образуют стенки растений, бактерий, грибов и т. д.

Липиды – разнообразные группы водоотталкивающих соединений, большая часть липидов представляет собой сложные эфиры трехатомного спирта, глицерина и жирных кислот, т. е. жиры. Жиры служат источником энергии и воды для клетки и организма в целом, кроме того они участвуют в терморегуляции организма, создавая теплоизолирующий жировой слой. Другие виды липидов выполняют защитную функцию, входя в состав наружного скелета насекомых, покрывая перья и шерсть.

Аминокислотами называют соединения, имеющие в своем составе карбоксильную группу и аминогруппу. Всего в природе встречается более 170 аминокислот. В клетках они выполняют функцию строительного материала для белков. Однако в составе белков встречаются только 20 аминокислот. Большинство аминокислот производится растениями и микроорганизмами. Однако у некоторых животных отсутствует часть ферментов, необходимых для синтеза аминокислот, поэтому они должны получать некоторые аминокислоты с пищей. Такие кислоты называются незаменимыми. Для человека восемь кислот незаменимы, а еще четыре заменимы только условно. Важнейшим свойством аминокислот является их способность вступать в реакцию полконденсации с образованием полимерных цепей – полипептидов и белков.

Белки являются главным строительным материалом для клетки. Они представляют собой сложные биополимеры, элементами которых выступают мономерные цепи, состоящие из различных сочетаний двадцати аминокислот. В живой клетке белков больше, чем других органических соединений (до 50% сухой массы).

Большинство белков выполняют функцию катализаторов (ферментов). Также белки играют роль переносчиков; например, гемоглобин переносит кислород от легких к тканям. Мышечные сокращения и внутриклеточные движения – результат взаимодействия молекул белков, функция которых заключается в координации движения. Есть белки – антитела, функцией которых является защита организма от вирусов, бактерий и т. д. Активность нервной системы зависит от белков, с помощью которых собирается и хранится информация из окружающей среды. Белки, которые называются гормонами, управляют ростом клеток и их активностью.

Довольно хорошо изучены сегодня молекулярные основы обмена веществ в клетке.

Существует три основных типа обмена веществ (метаболизма):

Катаболизм, или диссимиляция – процесс расщепления сложных органических соединений, сопровождающийся выделением химической энергии при разрыве химических связей. Эта энергия запасается в фосфатных связях АТФ (аденозинтрифосфорной кислоты).

Амфоболизм – процесс образования в ходе катаболизма мелких молекул, которые затем принимают участие в строительстве более сложных молекул.

Анаболизм, или ассимиляция – разветвленная система процессов биосинтеза сложных молекул с расходованием энергии АТФ.

Существует несколько механизмов изменчивости на молекулярном уровне. Важнейшим из них является механизм мутации генов – непосредственное преобразование самих генов, находящихся в хромосоме под воздействием внешних факторов. Факторами, вызывающими мутацию (мутагенами), являются: радиация, токсичные химические соединения, а также вирусы. При этом механизме порядок расположения генов в хромосоме не меняется.

Еще один механизм изменчивости – рекомбинация генов. Это создание новых комбинаций генов, располагающихся в конкретной хромосоме. При этом сами гены не меняются, а перемещаются с одного участка хромосомы на другой, или идет обмен генами между двумя хромосомами. Такой процесс имеет место при половом размножении у высших организмов. При этом не происходит изменения общего объема генетической информации, он остается неизменным. Этот механизм объясняет, почему дети лишь частично похожи на своих родителей – они наследуют признаки от обоих родительских организмов, которые сочетаются случайным образом.

Еще один механизм изменчивости был открыт лишь в 1950-е годы. Это – неклассическая рекомбинация генов, при которой происходит общее увеличение объема генетической информации за счет включения в геном клетки новых генетических элементов. Чаще всего эти элементы привносятся в клетку вирусами. Сегодня обнаружено несколько типов трансмиссивных генов. Среди них – плазмиды, представляющие собой двухцепочную кольцевую ДНК. Из-за них после длительного использования каких-либо лекарств наступает привыкание к этим лекарствам, и они перестают действовать. Патогенные бактерии, против которых действует наше лекарство, связываются с плазмидами, которые придают этим бактериям устойчивость к лекарству, и бактерии перестают его замечать.

Мигрирующие генетические элементы могут вызывать как структурные перестройки в хромосомах, так и мутации генов. Возможность использования таких элементов человеком привела к появлению новой науки – генной инженерии, целью которой является создание новых форм организмов с заданными свойствами. При этом конструируются новые, не существующие в природе сочетания генов с помощью генетических и биохимических методов. Для этого видоизменяется ДНК, которая кодируется для производства белка с нужными свойствами. На этом базируются все современные биотехнологии.

Онтогенетический уровень

Этот уровень возник в результате формирования живых организмов. Основной единицей жизни этого уровня выступает отдельная особь, а элементарным явлением – онтогенез. Биологическая особь может быть как одноклеточным, так и многоклеточным организмом, однако в любом случае она представляет собой целостную, самовоспроизводящуюся систему.

Онтогенез – процесс индивидуального развития организма от рождения через последовательные морфологические, физиологические и биохимические изменения до смерти, процесс реализации наследственной информации. В настоящее время не создана единая теория онтогенеза, поскольку не установлены причины и факторы, определяющие индивидуальное развитие организма.

Клеточный уровень. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию, т. е. наделена всеми признаками живого организма. Клеточные структуры лежат в основе строения любого живого организма, каким бы многообразным и сложным не представлялось его строение. Наука, изучающая живую клетку, называется цитологией. Она изучает строение клеток, их функционирование как элементарных живых систем, исследует приспособление к условиям среды и др. Также цитология изучает особенности специализированных клеток, становление их особых функций и развитие специфических клеточных структур. Таким образом, современная цитология может быть названа физиологией клетки.

Открытие существования клеток и их исследования произошло в конце XVII века, когда был изобретен первый микроскоп. Впервые клетка была описана английским ученым Робертом Гуком еще в 1665 году, когда он рассматривал кусочек пробки. Поскольку его микроскоп был не очень совершенным, то, что он увидел, было на самом деле стенками отмерших клеток. Потребовалось почти двести лет, чтобы биологи поняли, что главную роль играют не стенки клетки, а ее внутреннее содержание. Среди предшественников клеточной теории также следует назвать Антонии ван Левенгука (1632–1723), доказавшего, что ткани многих растительных организмов построены из клеток.

Т. Шванном и М. Шлейденом в 1838 году была создана клеточная теория, ставшая величайшим событием в биологии XIX века. Именно эта теория дала решающие доказательства единства всей живой природы, послужила фундаментом для развития эмбриологии, гистологии, физиологии, теории эволюции, а также понимания индивидуального развития организмов. Мощный толчок цитология получила с момента создания генетики и молекулярной биологии. После этого были открыты новые компоненты клетки – мембрана, рибосомы, лизосомы и др.

По современным представлениям клетки могут существовать как самостоятельные организмы (например, простейшие), так и в составе многоклеточных организмов, где есть половые клетки, служащие для размножения, и соматические клетки (клетки тела). Соматические клетки различаются по строению и функциям – существуют нервные, костные, мышечные, секреторные клетки. Размеры клеток могут варьироваться от 0,1 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе). В живом организме находятся миллиарды разнообразных клеток (до 1015), форма которых может быть самой причудливой (паук, звезда, снежинка и пр.).

Все клетки состоят из трех основных частей: плазматической мембраны, контролирующей переход вещества из окружающей среды в клетку и обратно; цитоплазмы с разнообразной структурой и клеточного ядра, в котором содержится генетическая информация. Кроме того, все животные и некоторые растительные клетки содержат центриоли – цилиндрические структуры, образующие клеточные центры. У растительных клеток также есть клеточная стенка (оболочка) и пластиды – специализированные структуры клеток, часто содержащие пигмент, от которого зависит окраска клетки.

Клетки растут и размножаются путем деления на две дочерние клетки. Существует два способа деления клеток. Митоз – это такое деление клеточного ядра, при котором образуются два дочерних ядра с набором хромосом, идентичным набору родительской клетки. При этом дочерним клеткам передается полный набор хромосом, несущих генетическую информацию. После расхождения дочерние нити ДНК превращаются в хромосомы, образуя характерные для данного организма структуры. Этот способ размножения характерен для всех клеток, кроме половых.

Мейоз – это деление клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро. Этот механизм клеточного деления в природе встречается только при подготовке к половому размножению, при образовании половых клеток (гамет). При слиянии гамет в процессе оплодотворения получается опять диплоидный набор хромосом. Этот способ размножения характерен только для половых клеток.

Многоклеточные организмы также развиваются из одной клетки – яйца, но в процессе его деления клетки видоизменяются, что приводит к появлению множества разных клеток – мышечных, нервных, кровяных и т. д. Разные клетки синтезируют разные белки. Тем не менее, в каждой клетке многоклеточного организма есть полная генетическая информация для построения всех белков, нужных для этого организма.

В зависимости от типа клеток все организмы делятся на две группы:

Прокариоты – клетки, лишенные ядра. В них молекулы ДНК не окружены ядерной мембраной и не организованы в хромосомы. К ним относятся бактерии.

Эукариоты – клетки, содержащие ядра. Кроме того, в них есть митохондрии – органеллы, в которых идет процесс окисления. К эукариотам относятся простейшие, грибы, растения и животные, поэтому они могут быть одноклеточными и многоклеточными.

Изучая живую клетку, ученые обратили внимание на существование двух основных типов ее питания, что позволило все организмы разделить на два вида:

Автотрофные организмы – они не нуждаются в органической пище и могут жить за счет ассимиляции углекислоты (бактерии) или фотосинтеза (растения), т. е. сами производят необходимые им питательные вещества;

Гетеротрофные организмы – это все организмы, которые не могут обходиться без органической пищи.

Многоклеточные организмы. Все многоклеточные организмы делятся на три царства: грибы, растения и животные. Их жизнедеятельность, а также работа отдельных частей многоклеточных организмов изучается физиологией. Эта наука рассматривает механизмы действия различных функций живого организма, их связь между собой, регуляцию и приспособление к внешней среде, происхождение и становление в процессе эволюции и индивидуального развития особи. По сути дела, это и есть процесс онтогенеза – развитие организма от рождения до смерти, при котором происходит рост, перемещение отдельных структур, дифференциация и усложнение организма. Этот процесс описывается на основе знаменитого биогенетического закона, сформулированного Эрнстом Геккелем (1834–1919), автором термина «онтогенез».

Биогенетический закон утверждает, что онтогенез в краткой форме повторяет филогенез, т. е. отдельный организм в своем индивидуальном развитии в сокращенной форме проходит все стадии развития своего вида. Таким образом, онтогенез представляет собой реализацию наследственной информации, закодированной в зародышевой клетке, а также проверку согласованности всех систем организма во время его работы и приспособления к окружающей среде.

Все многоклеточные организмы состоят из органов и тканей.

Ткани – это группа физически объединенных клеток и межклеточных веществ, сходных по строению и функции. Их изучение является предметом гистологии. Ткани могут образовываться как из одинаковых, так и из разных специализированных клеток. Например, у животных из одинаковых клеток построен плоский эпителий, а из разных клеток – мышечная, нервная, соединительная ткани.

Органы – это относительно крупные функциональные части организма, выполняющие определенную функцию, состоящие из клеток различных типов и управляемые общим механизмом организма. В свою очередь, органы входят в состав более крупных единиц – систем организма. Среди них выделяют нервную, пищеварительную, сердечнососудистую, дыхательную и др. системы. Каждая из этих систем включает действующие органы и иерархию управляющих механизмов.

Собственно живой организм можно представить как комплекс физиологических систем, обеспечивающих его гомеостаз и адаптации. Он образуется в результате взаимодействия генотипа (совокупности генов одного организма) с фенотипом (комплексом внешних признаков организма, сформировавшихся в ходе его индивидуального развития). Таким образом, организм представляет собой стабильную систему внутренних органов и тканей, существующих во внешней среде. Однако, поскольку общая теория онтогенеза пока еще не создана, многие процессы, происходящие во время развития организма, еще не получили своего полного объяснения.

  • IV. Биогенетические методы, способствующие увеличению продолжительности жизни
  • IV. Действия санитаров в случае угрозе жизни пациента или врача
  • PS.Эта формула применяется в том случае, когда уровень инфляции имеет стабильную величину, а период измерения инфляции имеет регулярную периодичность.
  • ОКО И ДУХ" ("L"Œil et l"esprit". Paris, 1964) - по­следняя изданная при жизни работа Мерло-Понти

  • Уровни организации живой природы

    Выделяют 8 уровней.

    Каждый уровень организации характеризуется определенным строением (химическим, клеточным или организменным) и соответствующими свойствами.

    Каждый следующий уровень обязательно содержит в себе все предыдущие.

    Давайте разберем каждый уровень подробно.

    8 уровней организации живой природы

    1. Молекулярный уровень организации живой природы

    • : органические и неорганические вещества,
    • (метаболизм): процессы диссимиляции и ассимиляции,
    • поглощение и выделение энергии.

    Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма — от одно- до многоклеточных.

    Этот уровень сложно назвать «живым» . Это скорее «биохимический» уровень — поэтому он является основой для всех остальных уровней организации живой природы.

    Поэтому именно он лег в основу классификации на царства — какое питательное вещество является основным у организма:у животных — , у грибов — хитин, у растений это- .

    Науки, которые изучают живые организмы именно на этом уровене:

    2. Клеточный уровень организации живой природы

    Включает в себя предыдущий — молекулярный уровень организации.

    На этом уровне уже появляется термин « » как «мельчайшая неделимая биологическая система»

    • Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);
    • Органойды клетки;
    • Жизненные циклы — зарождение, рост и развитие и деление клеток

    Науки, изучающие клеточный уровень организации :

    Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

    3. Тканевый уровень организации:

    Включает в себя 2 предыдущих уровня — молекулярный и клеточный .

    Этот уровень можно назвать «многоклеточным » — ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

    Наука — Гистология

    4. Органный (ударение на первый слог) уровень организации жизни

    • У одноклеточных органы — это органеллы — есть общие органеллы — характерные для всех или прокариотических клеток, есть отличающиеся.
    • У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.

    Тканевый и органный уровни организации — изучают науки:

    5. Организменный уровень

    Включает в себя все предыдущие уровни: молекулярный , клеточный, тканевый уровни и органный .

    На этом уровне идет деление Живой природы на царства — животных, растений и грибов.

    Характеристики этого уровня:

    • Обмен веществ (как на уровне организма, так и на клеточном уровне тоже)
    • Строение (морфология) организма
    • Питание (обмен веществ и энергии)
    • Гомеостаз
    • Размножение
    • Взаимодействие между организмами (конкуренция, симбиоз и т.д.)
    • Взаимодействие с окружающей средой

    Науки:

    6. Популяционно-видовой уровень организации жизни

    Включает молекулярный , клеточный, тканевый уровни, органный и организменный .

    Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

    Основные процессы на этом уровне:

    • Взаимодействие организмов между собой (конкуренция или размножение)
    • микроэволюция (изменение организма под действием внешних условий)

    100 р бонус за первый заказ

    Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

    Узнать цену

    Представление о структурных уровнях организации живых систем сформировалось под влиянием клеточной теории строения живых тел. В середине прошлого века клетка рассматривалась как последняя единица живой материи, наподобие атома неорганических тел. Из клеток, благодаря принципу упорядоченности, мыслились построенными все живые системы различного уровня организованности. Такие идеи высказывал один из создателей клеточной теории М. Шлейден (1804-1881). Другой выдающийся биолог Э. Геккель (1834-1919) пошел дальше и выдвинул гипотезу, согласно которой протоплазма клетки также обладает определенной структурой и состоит из субмикроскопических частей.

    Таким образом, в живой системе можно выделить новый структурный уровень организации. Эти идеи, далеко опережающие научные знания своей эпохи, встречали явное сопротивление, с одной стороны, последователей редукционизма, стремившихся свести процессы жизнедеятельности к совокупности определенных химических реакций, с другой - защитников витализма, которые пытались объяснить специфику живых организмов наличием в них особой «жизненной силы». Идеи редукционистов находили поддержку со стороны представителей механистического и «вульгарного» материализма, первые из которых пытались объяснить закономерности живой природы с помощью простейших механических и физических понятий и принципов, вторые же стремились редуцировать, свести эти законы к закономерностям химических реакций, происходящих в организме. Более того, некоторые представители «вульгарных» материалистов даже утверждали, что мозг порождает мысль подобно тому, как печень выделяет желчь.

    Несмотря на эти философские дискуссии между механицистами и виталистами, ученые-экспериментаторы пытались конкретно выяснить, от каких именно структур зависят специфические свойства живых организмов, поэтому продолжали исследовать их на уровне не только клетки, но также и клеточных структур. В первую очередь исследовали структуру белков и выяснили, что они построены из 20 аминокислот, которые соединены длинными полипептидными связями, или цепями. Хотя в состав белков человеческого организма входят все 20 аминокислот, но совершенно обязательны для него только 9 из них. Остальные, по-видимому, вырабатываются самим организмом. Характерная особенность аминокислот, содержащихся не только в человеческом организме, но и в других живых системах, состоит в том, что все они являются левовращающими плоскость поляризации изомерами, хотя в принципе существуют аминокислоты и правого вращения. Обе формы таких изомеров почти одинаковы между собой и различаются только пространственной конфигурацией, и поэтому каждая из молекул аминокислот является зеркальным отображением другой. Впервые это явление открыл выдающийся французский ученый Л. Пастер (1822-1895), исследуя строение веществ биологического происхождения. Он обнаружил, что такие вещества способны отклонять поляризованный луч и поэтому являются оптически активными, вследствие чего они были впоследствии названы оптическими изомерами. В отличие от этого, у молекул неорганических веществ эта способность отсутствует, и они построены симметрично. На основе своих опытов Л. Пастер высказал мысль, что важнейшим свойством всей живой материи является их молекулярная асимметричность, подобная асимметричности левой и правой рук. Опираясь на эту аналогию, в современной науке это свойство называют молекулярной хиральностью (от греч. cheir - рука). Интересно заметить, что если бы человек вдруг превратился в свое зеркальное отображение, то его организм функционировал бы нормально до тех пор, пока он не стал бы употреблять пищу растительного или животного происхождения, которую он не смог бы переварить.

    На вопрос, почему именно живая природа выбрала белковые молекулы, построенные из аминокислот левого вращения, до сих пор нет убедительного ответа. Сам Л. Пастер считал, что поскольку живое возникает из неживого, то необходимым предварительным условием для этого процесса должно стать превращение симметричных неорганических молекул в асимметричные. По его предположению, такое превращение могло быть вызвано различными космическими факторами, в частности, геомагнитными колебаниями, вращением Земли, электрическими разрядами и т.п. Попытки экспериментально проверить эту гипотезу не увенчались успехом. Поэтому высказывались предположения и о чисто случайном характере возникновения первых живых молекулярных систем, образованных из аминокислот левого вращения. В дальнейшем эта особенность могла быть передана по наследству и закрепиться как неотъемлемые свойства живого организма.

    Наряду с изучением структуры белка в последние полвека особенно интенсивно изучались механизмы наследственности и воспроизводства живых систем. Особенно остро этот вопрос встал перед биологами в связи с определением границы между живым и неживым. Большие споры возникли вокруг природы вирусов, которые обладают способностью к самовоспроизводству, но не в состоянии осуществлять процессы, которые мы обычно приписываем живым системам: обмен веществ, реакцию на внешние раздражители, рост и т.п. Очевидно, если считать определяющим свойством живого организма обмен веществ, то вирусы нельзя назвать живыми организмами, но если таким свойством считать воспроизводимость, то их следует отнести к живым телам. Так естественно возникает вопрос: какие свойства или признаки характерны для живых систем? На этот вопрос ученые отвечали по-разному в различные исторические этапы развития естествознания в зависимости от достигнутого уровня исследований. Пока не существовало развитых методов биологического исследования и сколь-нибудь ясных теоретических концепций, сущность живого сводили к наличию некоей таинственной «жизненной силы», которая отличает живое от неживого. Однако такое определение оставалось чисто отрицательным, так как не раскрывало ни подлинной причины, ни механизма отличия живого от неживого, а все сводило к иррациональной, непознаваемой и потому таинственной способности живых организмов. На этом основании сторонников такого взгляда называли «виталистами». Если первые виталисты ограничивались простой констатацией различия между живым и неживым, то их последователи использовали недостатки и ограниченность физико-химических представлений о жизни для подкрепления своей позиции. Наиболее интересной в этом отношении представляется попытка немецкого биолога и философа Х. Дриша (18671941), который возродил существовавшее еще у Аристотеля понятие энтелехии для объяснения целесообразности живых систем. Основываясь на своих опытах по регенерации морских ежей, которые восстанавливают удаленные у них части тел, Дриш утверждал, что все живые организмы обладают особой способностью к целесообразным действиям по сохранению и поддержанию своей организации и жизнедеятельности, которую он назвал энтелехией. По сути дела энтелехия ничем не отличается от отличается от «жизненной силы» виталистов, хотя в духе своего времени (XX в.) X. Дриш вводит градации и различные ее степени для разных живых организмов. На упреки, что энтелехию невозможно установить никакими эмпирическими методами, он отвечал, что магнитную силу также нельзя увидеть непосредственно. На этом примере можно убедиться, что современные виталисты используют понятия о ненаблюдаемых объектах (магнетизм, электричество и т.д.) для защиты своих взгляНдеосвм. отря на критику виталистов, биологи-экспериментаторы продолжали свою трудную и кропотливую работу по анализу структуры и функций живых систем. Как изменились наши представления о живых системах в связи с переходом на новый, молекулярный уровень исследования?

    Долгое время в связи с изучением синтеза неорганических веществ внимание ученых было сосредоточено на исследовании той части клеточной структуры, которая образована из белков. Многим казалось, что именно белки составляют фундаментальную основу жизни, и поэтому пытались свести свойства живых систем к свойствам и структуре белков. По-видимому, именно опираясь на это, Ф. Энгельс (1820-1895) выдвинул свое известное определение жизни как способа существования белковых тел, которое продолжали некритически повторять в нашей литературе, несмотря на глубокие исследования, выяснившие, что ни сам белок, ни его составные элементы не представляют ничего уникального в химическом отношении. В связи с этим дальнейшие исследования были направлены на изучение механизмов воспроизводства и наследственности в надежде обнаружить в них то специфическое, что отличает живое от неживого. Наиболее важным открытием на этом пути было выделение из состава клетки богатого фосфором вещества, обладающего свойствами кислоты и названного впоследствии нуклеиновой кислотой. В дальнейшем удалось выявить углеводный компонент этих кислот, в одном из которых оказалась D-дезоксирибоза, а в другом - D-рибоза. Соответственно этому, первый тип кислот стали называть дезоксирибонуклеиновыми кислотами (сокращенно -ДНК), а второй тип - рибонуклеиновыми (или кратко - РНК) кислотами. Потребовалось, однако, почти сто лет, прежде чем была расшифрована роль нуклеиновых кислот в хранении и передаче наследственности, участии в синтезе белка и обмене веществ.

    Не вдаваясь в детали, кратко рассмотрим эти важнейшие для биологии и естествознания вопросы. Роль ДНК была выяснена после того, как в 1 944 г. американским микробиологам удалось доказать, что выделенная из пневмококков свободная ДНК обладает свойством передавать генетическую информацию. До этого существовали либо косвенные, либо не совсем надежные свидетельства этого факта. В 1953 г. Д. Уотсоном и Ф. Криком была предложена и экспериментально подтверждена гипотеза о строении ДНК как носителя информации. В 1 960-е гг. французскими учеными Ф. Какобом (р. 1920) и Ж. Моно (1910-1976) была решена одна из важнейших проблем генной активности, раскрывающая фундаментальную особенность функционирования живой природы на молекулярном уровне. Они доказали, что по своей активности все гены разделяются на «регуляторные», кодирующие структуру регуляторного белка, и «структурные гены», кодирующие синтез метаболитов, в том числе ферментов. Дальнейшими исследованиями была установлена непосредственная зависимость синтеза белков (ферментов) от состояния генов (ДНК). Оказалось, что если воздействовать на генетический аппарат микроорганизмов определенными физическими факторами (ультрафиолетовые, рентгеновские и другие лучи), то они перестают синтезировать необходимые им метаболиты, в частности, белки. Благодаря этим исследованиям было показано, что основная функция генов состоит в кодировании синтеза белков. В связи с этим возник вопрос: каким образом осуществляется передача информации от ДНК к морфологическим структурам?

    Согласно упомянутой выше модели Уотсона и Крика, наследственную информацию в молекуле ДНК несет последовательность четырех оснований: два пуриновых и два пиримидиновых. Между тем в белках содержится 20 аминокислот, и поэтому становится необходимым объяснить, как четырехбуквенная матрица может быть переведена в 20-буквенную запись аминокислот белков. Первое гипотетическое объяснение механизма такого перевода дал Г. Гамов, предположив, что для кодирования одной аминокислоты требуется сочетание из трех нуклеотидов ДНК. Спустя семь лет его гипотеза была подтверждена экспериментально, и тем самым был раскрыт механизм считки генетической информации.

    Переход на молекулярный уровень исследования во многом изменил представления о механизме изменчивости. Согласно доминирующей точке зрения, основным источником изменений и последующего отбора являются мутации, возникающие на молекулярно-генетическом уровне. Однако, кроме переноса свойств от одного организма к другому, существуют и другие механизмы изменчивости, важнейшим из которых являются «генетические рекомбинации». В одних случаях, называемых «классическими», они не приводят к увеличению генетической информации, что наблюдается главным образом у высших организмов. В других, «неклассических» случаях рекомбинация сопровождается увеличением информации генома клетки. При этом фрагменты хромосомы клетки-донора могут включаться в хромосому клетки-реципиента, а могут оставаться в латентном, скрытом, состоянии, но под влиянием внешних факторов они становятся активными и потому могут соединиться с клеткой-реципиентом. Дальнейшее исследование генетических рекомбинаций привело к открытию целого вида переносимых или «мигрирующих» генетических элементов.

    Дальнейшие исследования «неклассических» форм генетических рекомбинаций привели к открытию целого ряда переносимых, или «мигрирующих» генетических элементов. Важнейшими из них являются автономные генетические элементы, названные плазмидами, которые служат активными переносчиками генетической информации. На основе этих результатов некоторыми учеными высказано предположение, что «мигрирующие» генетические элементы вызывают более существенные изменения в геномах клеток, чем мутации. Все это не могло не поставить вопроса о том, работает ли естественный отбор на молекулярно-генетическом уровне. Появление теории «нейтральных мутаций» еще больше обострило ситуацию, поскольку она доказывает, что изменения в функциях аппарата, синтезирующего белок, являются результатом случайных мутаций, не оказывающих влияния на эволюцию. Хотя такой вывод и не является общепризнанным, но хорошо известно, что действие естественного отбора происходит на уровне фенотипа, т.е. живого, целостного организма, а это связано уже с более высоким уровнем исследования.

    Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

    Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

    Это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

    Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

    Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

    Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

    Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

    Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

    Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

    Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.

    Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации . Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.

    Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.

    Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.

    Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.

    Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.

    Популяционно-видовой уровень - это уровень совокупностей особей - популяций и видов . Этот уровень изучается систематикой, таксономией, экологией, биогеографией, генетикой популяций . На этом уровне изучаются генетические и экологические особенности популяций , элементарные эволюционные факторы и их влияние на генофонд (микроэволюция), проблема сохранения видов.

    Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций , динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.

    Выделяют также биосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.

    2. Фундаментальные свойства живой материи

    Обмен веществ (метаболизм)

    Обмен веществ (метаболизм) - совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; образование, разрушение и обновление клеточных структур и межклеточного вещества. В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Ассимиляция - процессы синтеза сложных молекул из простых с расходованием энергии, запасенной в ходе диссимиляции (а также накопление энергии при отложении в запас синтезированных веществ). Диссимиляция - процессы расщепления (анаэробного или аэробного) сложных органических соединений, идущее с высвобождением энергии, необходимой для осуществления жизнедеятельности организма. В отличие от тел неживой природы обмен с окружающей средой для живых организмов является условием их существования. При этом происходит самообновление. Процессы обмена веществ, протекающие внутри организма, объединены в метаболические каскады и циклы химическими реакциями, которые строго упорядочены во времени и пространстве. Согласованное протекание большого количества реакций в малом объеме достигается путем упорядоченного распределения отдельных звеньев обмена веществ в клетке (принцип компартментализации). Процессы обмена веществ регулируются с помощью биокатализаторов - особых белков-ферментов. Каждый фермент обладает субстратной специфичностью катализировать превращение лишь одного субстрата. В основе этой специфичности лежит своеобразное "узнавание" субстрата ферментом. Ферментативный катализ отличается от небиологического чрезвычайно высокой эффективностью, в результате чего скорость соответствующей реакции повышается в 1010 - 1013 раз. Каждая молекула фермента способна осуществлять от нескольких тысяч до нескольких миллионов операций в минуту, не разрушаясь в процессе участия в реакциях. Еще одно характерное отличие ферментов от небиологических катализаторов состоит в том, что ферменты способны ускорять реакции при обычных условиях (атмосферном давлении, температуре тела организма и т.п.). Все живые организмы могут быть разделены на две группы - автотрофы и гетеротрофы, отличающиеся источниками энергии и необходимых веществ для своей жизнедеятельности. Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (фотосинтетики - зеленые растения, водоросли, некоторые бактерии) или энергии, получаемой при окислении неорганического субстрата (хемосинтетики - серо-, железобактерии и некоторые другие), Автотрофные организмы способны синтезировать все компоненты клетки. Роль фотосинтезирующих автотрофов в природы является определяющей - являясь первичным продуцентом органического вещества в биосфере, они обеспечивают существование всех других организмов и ход биогеохимических циклов в круговороте веществ на Земле. Гетеротрофы (все животные, грибы, большинство бактерий, некоторые бесхлорофилльные растения) - организмы, нуждающиеся для своего существования в готовых органических веществах, которые, поступая в качестве пищи, служат как источником энергии, так и необходимым "строительным материалом". Характерной чертой гетеротрофов является наличие у них амфиболизма, т.е. процесса образования мелких органических молекул (мономеров), образующихся при переваривании пищи (процесс деградации сложных субстратов). Такие молекулы - мономеры используются для сборки собственных сложных органических соединений.

    Самовоспроизведение (репродукция)

    Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов. Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, т.к. продолжительность жизни отдельного организма ограничена. Размножение с избытком компенсирует потери, обусловленные естественным отмиранием особей, и таким образом поддерживает сохранение вида в ряду поколений особей. В процессе эволюции живых организмов происходила эволюция способов размножения. Поэтому у ныне существующих многочисленных и разнообразных видов живых организмов мы обнаруживаем разные формы размножения. Многие виды организмов сочетают несколько способов размножения. Необходимо выделить два, принципиально отличающихся типа размножения организмов - бесполое (первичный и более древний тип размножения) и половое. В процессе бесполого размножения новая особь образуется из одной или группы клеток (у многоклеточных) материнского организма. При всех формах бесполого размножения потомки обладают генотипом (совокупность генов) идентичным материнскому. Следовательно, все потомство одного материнского организма оказывается генетически однородным и дочерние особи обладают одинаковым комплексом признаков. При половом размножении новая особь развивается из зиготы, образующейся путем слияния двух специализированных половых клеток (процесс оплодотворения), продуцируемых двумя родительскими организмами. Ядро в зиготе содержит гибридный набор хромосом, образующийся в результате объединения наборов хромосом слившихся ядер гамет. В ядре зиготы, таким образом, создается новая комбинация наследственных задатков (генов), привнесенных в равной мере обоими родителями. А развивающийся из зиготы дочерний организм будет обладать новым сочетанием признаков. Иными словами, при половом размножении происходит осуществление комбинативной формы наследственной изменчивости организмов, обеспечивающий приспособление видов к меняющимся условиям среды и представляющей собой существенный фактор эволюции. В этом заключается значительное преимущество полового размножения по сравнению с бесполым. Способность живых организмов к самовоспроизведению базируется на уникальном свойстве нуклеиновых кислот к репродукции и феномене матричного синтеза, лежащего в основе образования молекул нуклеиновых кислот и белков. Самовоспроизведение на молекулярном уровне обусловливает как осуществление обмена веществ в клетках, так и самовоспроизведение самих клеток. Клеточное деление (самовоспроизведение клеток) лежит в основе индивидуального развития многоклеточных организмов и воспроизведения всех организмов. Размножение организмов обеспечивает самовоспроизведение всех видов, населяющих Землю, что в свою очередь обусловливает существование биогеоценозов и биосферы.

    Наследственность и изменчивость

    Наследственность обеспечивает материальную преемственность (поток генетической информации) между поколениями организмов. Она тесно связана с репродукцией на молекулярном, субклеточном и клеточном уровнях. Генетическая информация, определяющая разнообразие наследственных признаков, зашифрована в молекулярной структуре ДНК (у некоторых вирусов - в РНК). В генах закодирована информация о структуре синтезируемых белков, ферментных и структурных. Генетический код - это система "записи" информации о последовательности расположения аминокислот в синтезируемых белках с помощью последовательности нуклеотидов в молекуле ДНК. Совокупность всех генов организма называется генотипом, а совокупность признаков - фенотипом. Фенотип зависит как от генотипа, так и факторов внутренней и внешней среды, которые влияют на активность генов и обусловливают регулярные процессы. Хранение и передача наследственной информации осуществляется у всех организмов с помощью нуклеиновых кислот, генетический код един для всех живых существ на Земле, т.е. он универсален. Благодаря наследственности из поколения в поколение передаются признаки, обеспечивающие приспособленность организмов к среде их обитания. Если бы при размножении организмов проявлялась только преемственность существующих признаков и свойств, то на фоне меняющихся условий внешней среды существование организмов было бы невозможно, так как необходимым условием жизни организмов является их приспособленность к условиям среды обитания. Проявляется изменчивость в разнообразии организмов, принадлежащих к одному и тому же виду. Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении. Выделяют две основные формы изменчивости, различающиеся по механизмам возникновения, характеру изменения признаков и, наконец, их значимости для существования живых организмов - генотипическую (наследственную) и модификационную (ненаследственную). Генотипическая изменчивость связана с изменением генотипа и приводит к изменению фенотипа. В основе генотипической изменчивости могут лежать мутации (мутационная изменчивость) или новые комбинации генов, возникающие в процессе оплодотворения при половом размножении. При мутационной форме изменения связаны, в первую очередь, с ошибками при репликации нуклеиновых кислот. Таким образом происходит возникновение новых генов, несущих новую генетическую информацию; происходит появление новых признаков. И если вновь возникающие признаки полезны организму в конкретных условиях, то они "подхватываются" и "закрепляются" естественным отбором. Таким образом, на наследственной (генотипической) изменчивости базируется приспособляемость организмов к условиям внешней среды, разнообразие организмов, создаются предпосылки для позитивной эволюции. При ненаследственной (модификационной) изменчивости происходят изменения фенотипа под действием факторов внешней среды и не связанные с изменением генотипа. Модификации (изменения признаков при модификационной изменчивости) происходят в пределах нормы реакции, находящейся под контролем генотипа. Модификации не передаются следующим поколениям. Значение модификационной изменчивости заключается в том, что она обеспечивает приспособляемость организма к факторам внешней среды в течение его жизни.

    Индивидуальное развитие организмов

    Всем живым организмам свойственен процесс индивидуального развития - онтогенез. Традиционно, под онтогенезом понимают процесс индивидуального развития многоклеточного организма (образующегося в результате полового размножения) от момента формирования зиготы до естественной смерти особи. За счет деления зиготы и последующих поколений клеток формируется многоклеточный организм, состоящий из огромного числа разных типов клеток, различных тканей и органов. Развитие организма базируется на "генетической программе" (заложенной в генах хромосом зиготы) и осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи. На ранних этапах индивидуального развития происходит интенсивный рост (увеличение массы и размеров), обусловленный репродукцией молекул, клеток и других структур, и дифференцировка, т.е. появление различий в структуре и усложнение функций. На всех этапах онтогенеза существенное регулирующее влияние оказывают на развитие организма различные факторы внешней среды (температура, гравитация, давление, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические агенты). Изучение роли этих факторов в процессе индивидуального развития животных и человека имеет огромное практическое значение, возрастающее по мере усиления антропогенного воздействия на природу. В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

    Раздражимость

    Неотъемлемым свойством организмов и всех живых систем является раздражимость - способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать. У организмов раздражимость сопровождается комплексом изменений, выражающихся в сдвигах обмена веществ, электрического потенциала на мембранах клеток, физико-химических параметров в цитоплазме клеток, в двигательных реакциях, а высокоорганизованным животным присущи изменения в их поведении.

    4. Центральная догма молекулярной биологии - обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку , но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году и приведено в соответствие с накопившимися к тому времени данными в 1970 году. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК → ДНК. В природе встречаются также переходы РНК → РНК и РНК → ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.

    Универсальные способы передачи биологической информации

    В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера - ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:

    Общий - встречающиеся у большинства живых организмов;

    Специальный - встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента ;

    Неизвестные - не обнаружены.

    Репликация ДНК (ДНК → ДНК)

    ДНК - основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин , затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.

    Транскрипция (ДНК → РНК)

    Транскрипция - биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК . Транскрипцию осуществляют факторы транскрипции и РНК-полимераза . В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом .

    Трансляция (РНК → белок)

    Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы ) ядерной мембраной , поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.

    5. Обратная транскрипция - это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК . Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.

    Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии , которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов , например, ВИЧ и в случае ретротранспозонов .

    Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом . Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов . К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

    Векторная молекула ДНК - это молекула ДНК, которая выступает в роли носителя. Молекулу-носитель должен отличать ряд особенностей:

    Способность к автономной репликации в клетке хозяина (чаще бактериальной или дрожжевой)

    Наличие селективного маркера

    Наличие удобных сайтов рестрикции

    В роли векторов чаще всего выступают бактериальные плазмиды.