» » Географическая зональность и вертикальная поясность. Географическая зональность Смотреть что такое "зональность географическая" в других словарях

Географическая зональность и вертикальная поясность. Географическая зональность Смотреть что такое "зональность географическая" в других словарях

Неравномерное распределение солнечного тепла по поверхности Земли вследствие ее шарообразности и вращения вокруг своей оси формирует, как мы уже говорили, климатические поясы (стр. 54). Для каждого из них характерны определенная направленность и ритмика природных явлений (накопление биомассьт, интенсивность почвообразования и образования рельефа под влиянием внешних факторов и др.). Поэтому на основе климатических поясов можно выделить поясы географические.

Всего выделяется 13 географических поясов: один экваториальный, два субэкваториальных (в северном и южном полушариях), два тропических, два субтропических, два умеренных, два субполярных (субарктический и субантарктический) и два полярных (арктический и антарктический).

Самый перечень названий уже свидетельствует о симметричном расположении поясов по отношению к экватору. В каждом из них преобладают определенные воздушные массы. Для поясов, носящих названия без приставки « », характерны свои собственные воздушные массы (экваториальные, тропические, умеренные, арктические). Напротив, в трех парах, имеющих приставку «суб», попеременно господствуют соседних географических поясов: в летнюю половину года в северном полушарии - более южного (а в южном, наоборот,- северного), в зимнюю половину года - более северного (а в южном полушарии - южного).

Широтно вытянутые географические поясы суши неоднородны. Это определяется прежде всего положением той или иной их части в приокеанических или континентальных районах. Приокеаниче-ские лучше увлажняются, а континентальные, внутренние, напротив, более сухие: сюда влияние океанов уже не распространяется. На этом основании поясы делят на секторы - приокеанические и континентальные.

Особенно хорошо секторность выражена в умеренных и субтропических поясах Евразии, где суша достигает максимальных размеров. Здесь влажные лесные ландшафты приокеанических окраин (два приокеанических сектора) по мере в глубь материка сменяются сухими степными, а затем полупустынными и пустынными ландшафтами континентального сектора.

Наименее четко секторность проявляется в тропическом, субэкваториальном и экваториальном поясах. В тропиках приносят осадки только на восточные периферии поясов. Здесь и распространены влажные . Что касается внутренних и западных районов, то они отличаются сухим, жарким климатом, а пустыни на западных побережьях выходят к самому океану. Поэтому в тропиках выделяется всего два сектора.

По два сектора выделяется также в экваториальном и субэкваториальных поясах. В субэкваториальных - это постоянно влажный сектор () с лесными ландшафтами и сезонно влажный сектор (включает всю остальную часть), занятый редколесьями и саваннами. В экваториальном поясе часть территории относится к постоянно влажному сектору с влажными «дождевыми» лесами (гилеями) и лишь восточная - к сезонно влажному, где распространены преимущественно листопадные .

Наиболее резкой «секторная граница» бывает там, где она проходит по горным барьерам (например, в Кордильерах Северной Америки и Андах - Южной). Здесь западные приокеанические сектора занимают узкую прибрежную полосу равнин и прилегающие горные склоны.

Крупные составные части поясов - сектора подразделяются на более мелкие единицы - природные зоны. Основой такого подразделения служат различия в условиях увлажнения территории. Однако было бы неправильно измерять лишь количеством выпадающих осадков. Здесь важно соотношение влаги и тепла, так как одинаковое количество осадков, например менее 150-200 мм в год. может привести и к развитию болот (в тундрах), и к формированию пустынь (в тропиках).

Для характеристики увлажнения существует множество количественных показателей, более двух десятков коэффициентов или индексов (сухости или влажности). Однако все они не идеальны. Для нашей темы - выяснения влияния соотношения тепла и влаги на дифференциацию природных зон - лучше учитывать не всю сумму осадков за год. а только так называемое валовое увлажнение (осадки сток) и его к радиационному балансу, так как в биологических процессах практически не участвует. Такой показатель называют «гидротермическим коэффициентом» (ГТК). Он полнее других выражает основные зональные закономерности. Если он имеет величину больше 10, то развиваются влажные (преимущественно лесные) ландшафты, если менее 7 - травянисто-кустарниковые, а в диапазоне от 7 до 10 - переходные типы; при ГТК меньшем 2 - пустыни.

Можно построить соотношения тепла и влаги в основных природных зонах суши на равнинах (см. стр. 54). Заключенное внутри кривой пространство представляет собой арену развития природных ландшафтов.

Особенно велико разнообразие ландшафтов в жарком климатическом поясе. Это результат больших различий здесь в условиях увлажнения при высоких температурах. Ученые уже давно обратили на связь условий увлажнения С продуктивностью растительной массы: выше всего она в дельтовых районах суб-зкнаториального пояса - до 3 тыс. ц сухого вещества с 1 га в год; дельты, расположенные на стыке суши и моря, более всего обеспечены влагой и необходимыми химическими элементами в почве, а в условиях высоких температур продолжается здесь круглый . Названия природных зон даются по характеру растительности, так как она наиболее наглядно отражает зональные черты природы. В одних и тех же природных зонах на разных материках растительный покров имеет сходные черты. Однако на распределение растительности оказывают влияние не только зональные особенности климата, но и другие факторы: эволюции материков, особенности пород, слагающих поверхностные горизонты, влияние человека. Значительную роль в распределении современной растительности играет также расположение материков. Так, территориальная близость между Евразией и Северной Америкой, особенно в тихоокеанских районах, обусловила очевидное родство растительности в полярных районах обоих материков. Напротив, растительный покров более отдаленных друг от друга материков, расположенных в южном полушарии, значительно отличается по видовому составу. Особенно много эндемиков, т. е. видов, распространенных на ограниченной территории, в Австралии - это ее длительной изоляции.

Основными барьерами на путях миграции растений были не только океаны, но и горные хребты, хотя случалось, что и служили путями расселения растений.

Все эти факторы обусловили разнообразие растительного покрова земного шара. В следующем разделе при описании природных зон мы будем давать характеристику зонального типа растительности, свойства которого наиболее соответствуют климатическим условиям определенных зон. Однако по видовому составу растительность одинаковых природных зон на разных материках характеризуется значительными различиями.

Природные зоны арктического, субарктического, умеренного и субтропического поясов наиболее ярко выражены в Евразии и Северной Америке. Это связано с большими размерами суши в этих широтах и обширностью равнинных территорий, так как высокие горы и нарушают, как мы увидим ниже, общие черты зональности. Большая часть материков Южной Америки, Африки, а также южная часть Азии расположены в эква’-ториальном, субэкваториальном и тропическом поясах.

Поясов и природных зон усложняются по мере продвижения от арктических районов к экватору. В этом направлении на фоне увеличивающегося количества тепла возрастают региональные различия в условиях увлажнения. Отсюда и значительно более пестрый характер ландшафтов в тропических широтах.

Наряду с зональностью природных процессов существует явление, называемое интразональностью. Интразональ-ные почвы, растительный покров, различные природные процессы могут возникать в специфических условиях и встречаются на отдельных территориях в разных природных зонах. Причем обычно ингразональные явления несут отпечаток соответствующей зоны; мы увидим это ниже на конкретных примерах.

Природные зоны подразделяются на более мелкие единицы- ландшафты, которые служат основными ячейками географической оболочки.

В ландшафтах все природные компоненты тесно взаимосвязаны и взаимообусловлены, как бы «подогнаны» друг к другу, т. е. образую! закономерные . Разнообразие ландшафтов определяется многими факторами: вещественным составом и дру1 ими особенностями литосферы, особенностями поверхностных и подземных вод, климатом, характером почвенного и растительного покрова, а также унаследованными, «вчерашними» чертами.

В настоящее время, когда все более возрастают и прямые воздействия на природу хозяйственной деятельности человека, происходит «девственных» ландшафтов в «антропогенные».

В свою очередь ландшафты из-за различий микроклимата, микрорельефа, почвенных подтипов могут подразделяться на более мелкие территориальные комплексы низшего ранга -- урочища и фации - конкретный OBpai или и их склоны, и т. . Однородные ландшафты слагаются из одинаковых набору и закономерно повторяющихся сочетаний фаций и урочищ. Вместе с тем ландшафты, разумеется, не изолированы и влияют друг на друга вследствие циркуляции атмосферы, миграции организмов и т. д.

Местные черты ландшафтов индивидуальны и неповторимы. Но ландшафты обладают и общими зональными чертами, которые могут повторяться даже на разных материках. Например, Великих равнин в Северной Америке напоминают степные территории умеренно континентальных частей Евразии. По лому при некоторой абстракции ландшафты суши можно обобщить, типизировать, что позволяет проследить закономерное размещение зональных типов ландшафтов не только на каждом материке в отдельности, но и в планетарном масштабе.

Чтобы легче уяснить расположение географических поясов и зон на суше нашей , вообразим гипотетический однородно равнинный материк с площадью, равной половине площади суши (пусть другая, сходная по устройству поверхности часть суши располагается в другом полушарии, за океаном). Очертание этого материка в северном полушарии может напоминать нечто среднее между Северной Америкой и Евразией, а в южном - нечто среднее между Южной Америкой, Африкой и Австралией. Тогда нанесенные на границы географических поясов и зон отразят генерализованные () контуры их на равнинах реальных материков.


Географическая зональность - основная закономерность распределения ландшафтов на поверхности Земли, состоящая в последовательной смене природных зон, обусловленной характером распределения лучистой энергии Солнца по широтам и неравномерностью увлажнения.

Географической зональности подчинены процессы в атмосфере, гидросфере, экзогенные процессы образования рельефа, образование почв, формирование и изменение биосферы.

В горах на зональность накладывается и замещает ее высотная поясность.

В некоторых случаях главными в формировании ландшафта становятся не зональные, а местные условия (азональность).

Высотная поясность - закономерная смена природных условий и ландшафтов в горах по мере возрастания абсолютной высоты.

Высотная поясность объясняется изменением климата с высотой: на 1 км подъема температура воздуха снижается в среднем на 6oС, уменьшается давление воздуха, его запыленность, возрастает интенсивность солнечной радиации, до высоты 2-3 км увеличивается облачность и количество осадков.

Высотная поясность сопровождается изменениями геоморфологических, гидрологических, почвообразовательных процессов, состава растительности и животного мира.

Многие особенности высотной поясности определяются экспозицией склонов, их расположением по отношению к господствующим воздушным массам и удаленностью от океанов.

Ландшафты высотных поясов сходны с ландшафтами природных зон на равнинах и следуют друг за другом в том же порядке. Существуют высотные пояса, не имеющие сходных зон на равнинах (альпийские и субальпийские луга).

Современное формирование земной коры. Основные типы.

Существует два основных типа земной коры: океанская и материковая. Выделяется также переходный тип земной коры.

Океанская земная кора. Мощность океанской земной коры в современную геологическую эпоху колеблется от 5 до 10 км. Она состоит из следующих трех слоев:

1) верхний тонкий слой морских осадков (мощность не более 1 км);

2) средний базальтовый слой (мощность от 1,0 до 2,5 км);

3) нижний слой габбро (мощность около 5 км).

Материковая (континентальная) земная кора. Материковая земная кора имеет более сложное строение и большую мощность, чем океанская земная кора. Ее мощность в среднем составляет 35-45 км, а в горных странах увеличивается до 70 км. Она состоит также их трех слоев, но существенно отличается от океанской:

1) нижний слой, сложенный базальтами (мощность около 20 км);

2) средний слой занимает основную толщу материковой коры и условно называется гранитным. Он сложен в основном гранитами и гнейсами. Под океаны этот слой не распространяется;

3) верхний слой – осадочный. Его мощность в среднем составляет около 3 км. В некоторых районах мощность осадков достигает 10 км (например, в Прикаспийской низменности). В отдельных районах Земли осадочный слой отсутствует вообще и на поверхность выходят гранитный слой. Такие районы называются щитами (например, Украинский щит, Балтийский щит).

На материках в результате выветривания горных пород образуется геологическая формация, получившая название коры выветривания.

Гранитный слой от базальтового отделен поверхностью Конрада , на которой скорость сейсмических волн возрастает от 6,4 до 7,6 км/ сек.

Граница между земной корой и мантией (как на материках, так и на океанах) проходит по поверхности Мохоровичича (линия Мохо). Скорость сейсмических волн на ней скачкообразно увеличивается до 8 км/ час.

Кроме двух основных типов – океанского и материкового – есть также участки смешанного (переходного) типа.

На материковых отмелях или шельфах кора имеет мощность около 25 км и в целом сходна с материковой корой. Однако в ней может выпадать слой базальта. В Восточной Азии в области островных дуг (Курильские острова, Алеутские острова, Японские острова и др.) земная кора переходного типа. Наконец, весьма сложна и пока мало изучена земная кора срединных океанических хребтов. Здесь нет границы Мохо, и вещество мантии по разломам поднимается в кору и даже на ее поверхность.

Многие физико-географические явления в географической оболочке распределяются в форме полос, вытянутых вдоль параллелей, или под некоторым углом к ним. Это свойство географических явлений называется зональностью (закон географической зональности). Представления о природной зональности возникли еще у древнегреческих ученых. Так, в V в. до н.э. Геродот и Эвдоникс отмечали пять зон Земли: тропическую, две умеренные и две полярные. Большой вклад в учение о природной зональности внес немецкий географ Гумбольдт, который установил климатические и растительные зоны Земли («География растений», 1836 г.). В России представления о географической зональности высказаны в 1899 г. Докучаевым в книге «Учение о зонах природы. Горизонтальные и вертикальные почвенные зоны». Профессору Григорьеву принадлежат исследования о причинах и факторах зональности. Он пришел к выводу о большой роли соотношения радиационного баланса и количества годовых осадков (1966 г.).

В настоящее время считается, что природная зональность представлена

компонентной зональностью;

ландшафтной зональностью.

Все компоненты географической оболочки подчинены Мировому закону зональности. Зональность отмечается для климатических показателей, растительных группировок и типов почв. Она проявляется также в гидрологических и геохимических явлениях, как производная от климатических и почвенно-растительных условий.

В основе зональности физико-географических явлений находится закономерность поступления солнечной радиации, приход которой убывает от экватора к полюсам. Однако на такое распределение солнечной радиации накладывается фактор прозрачности атмосферы, который является азональным, так как он не связан с формой Земли. От солнечной радиации зависит температура воздуха, на распределения которой влияет еще один азональный фактор - свойства земной поверхности - ее теплоемкость и теплопроводность. Этот фактор приводит к еще большему нарушению зональности. На распределение тепла на поверхности Земли большое влияние оказывают также океанические и воздушные течения, образующие системы переноса тепла.

Еще более сложно распределяются на нашей планете атмосферные осадки. Они имеют, с одной стороны, зональный характер, а с другой - связаны с положением территории в западной или восточной части континентов и высотой земной поверхности.

Совместное воздействие тепла и влаги является основным фактором, который определяет большинство физико-географических явлений. Поскольку в распределении влаги и тепла сохраняется ориентация по широте, то и все явления, связанные с климатом, ориентированы поширотно. В результате на Земле образуется поширотная структура, называемая географической поясностью.

Поясность проявляется в распределении основных климатических характеристик: солнечной радиации, температуры и атмосферного давления, что приводит к образованию системы из 13 климатических поясов. Растительные группировки на Земле также образуют вытянутые полосы, но более сложной конфигурации, чем климатические пояса. Их называют зонами растительности. Почвенный покров тесно связан с растительностью, климатом и характером рельефа, что позволило В.В. Докучаеву выделить генетические типы почв.

В 50-х годах XX столетия географы Григорьев и Будыко развили закон зональности Докучаева и сформулировали периодический закон географической зональности. Этим законом устанавливается повторение однотипных географических зон внутри поясов - в зависимости от соотношения тепла и влаги. Так, лесные зоны имеются в экваториальном, субэкваториальном, тропическим и умеренном поясах. Степи и пустыни также встречаются в разных географических поясах. Наличие однотипных зон в разных поясах объясняется повторением одинаковых соотношений тепла и влаги.

Таким образом, зона - это крупная часть географического пояса, которая характеризуется одинаковыми показателями радиационного баланса, годовой суммы осадков и испаряемости. В начале прошлого века Высоцкий предложил коэффициент увлажнения, равный отношению количества осадков к испаряемости. Позднее Будыко для обоснования периодического закона ввел показатель - радиационный индекс сухости, представляющий собой отношение поступающего количества солнечной энергии к затратам тепла на испарение атмосферных осадков. Как установлено, имеется тесная связь географических зон с величиной поступления солнечного тепла и радиационным индексом сухости.

Географические пояса внутренне неоднородны, что, прежде всего, связано с азональной циркуляцией атмосферы и переносом влаги. С учетом этого выделяются секторы. Как правило, их три: два океанических (западный и восточный) и один континентальный. Секторность - это географическая зональность, которая выражается в смене основных природных показателей по долготе, то есть от океанов вглубь материков.

Ландшафтная зональность определяется тем, что географическая оболочка в процессе своего развития приобрела «мозаичное» строение и состоит из множества природных комплексов неодинаковой величины и сложности. По определению Ф.Н. Милькова ПТК - это само регулируемая система взаимосвязанных компонентов, функционирующая под воздействием одного или нескольких компонентов, выступающих в роли ведущего фактора.

Bертикальная поясность

Высотная поясность - часть вертикальной зональности природных явлений и процессов, относящихся только к горам. Из-за закономерного понижения температур воздуха с высотой меняются соотношения тепла и влаги, условия стока, рельефообразования, почвенно-растительный покров и связанные с ним животные.

Подъём на высокую гору сопровождается сменой нескольких поясов растительности, как при движении от экватора к полюсам. В отличии от природных зон здесь мало зверей, но много хищных птиц (самая крупная хищная птица - кондор. Он парит над Андами на высоте до 7 тыс. м). В каждом типе окружающей среды существует своё собственное сообщество животных и растений даже в пределах одной природной зоны, но на разных материках (природный комплекс).Одновременно с зональными действуют и азональные факторы, связанные с внутренней энергией Земли (рельеф, высота, конфигурация материков).

В любом месте земного шара зональные и азональные факторы действуют одновременно. Набор высотных поясов в горах зависит от географического положения самих гор, которое определяет характер нижнего пояса, и высоты гор, определяющей характер верхнего яруса. Последовательность высотных поясов совпадает с последовательностью изменения природных зон на равнинах. Но в горах пояса меняются быстрее, есть пояса, которые характерны только для гор - субальпийские и альпийские луга.

Высотная поясность горных систем многообразна. Она тесно связана с широтными зонами. С высотой трансформируются климат, почвенно-растительный покров, гидрологические и геоморфологические процессы, резко выступает фактор экспозиции склонов и т.д. С изменением компонентов природы изменяются природные комплексы -- образуются высотные природные пояса. Явление смены природно-территориальных комплексов с высотой называют высотной поясностью, или вертикальной высотной зональностью.

Формирование типов высотной поясности горных систем определяют следующие факторы:

  • > Географическое положение горной системы. Количество горных высотных поясов в каждой горной системе и их высотное положение в основных чертах определяются широтой места и положением территории по отношению к морям и океанам. По мере продвижения с севера на юг высотное положение природных поясов в горах и их набор постепенно увеличиваются.
  • > Абсолютная высота горной системы. Чем выше поднимаются горы и чем ближе они расположены к экватору, тем большее количество высотных поясов они имеют. Поэтому в каждой горной системе развивается свой набор высотных поясов.
  • > Рельеф. Рельеф горных систем (орографический рисунок, степень расчлененности и выравненности) определяет распределение снежного покрова, условия увлажнения, сохранность или вынос продуктов выветривания, влияет на развитие почвенно-растительного покрова и тем самым определяет разнообразие природных комплексов в горах. Например, развитие поверхностей выравнивания способствует увеличению площадей высотных поясов и формированию более однородных природных комплексов.
  • > Климат. Это один из важнейших факторов, формирующих высотную поясность. С поднятием в горы меняются температура, увлажнение, солнечная радиация, направление и сила ветра, типы погоды. Климат определяет характер и распространение почв, растительности, животного мира и т.д., а следовательно, разнообразие природных комплексов.

Экспозиция склонов. Она играет существенную роль в распределении тепла, влаги, ветровой деятельности, а следовательно, процессов выветривания и распределения почвенно-растительного покрова. На северных склонах каждой горной системы высотные пояса расположены обычно ниже, чем на южных склонах.

На положение, изменение границ и природный облик высотных поясов оказывает влияние и хозяйственная деятельность человека.

Уже в неогене на равнинах России существовали широтные зоны, почти аналогичные современным, но в связи с более теплым климатом зоны арктических пустынь и тундр отсутствовали. В неоген-четвертичное время происходят существенные изменения природных зон. Это было вызвано активными и дифференцированными неотектоническими движениями, похолоданием климата и возникновением ледников на равнинах и в горах. Поэтому природные зоны смещались к югу, изменялся состав их флоры (усиление листопадной бореальной и холодостойкой флоры современных хвойных лесов) и фауны, формировались самые молодые зоны -- тундра и арктическая пустыня, а в горах -- альпийский, горно-тундровый и нивально-гляциальный пояса.

В более теплое микулинское межледниковье (между московским и валдайским оледенениями) природные зоны смещались к северу, а высотные пояса занимали более высокие уровни. В это время формируется структура современных природных зон и высотных поясов. Но в связи с изменением климата в позднем плейстоцене и голоцене границы зон и поясов смещались несколько раз. Это подтверждается многочисленными реликтовыми ботаническими и почвенными находками, а также спорово-пыльцевыми анализами четвертичных отложений.

В горах при подъеме вверх меняется количество и состав солнечной радиации, уменьшаются количество атмосферных осадков и атмосферное давление. Изменение климатических условий приводит к изменению в том же направлении геоморфологических процессов, состава растительности, особенностей почв и характера животного мира. Это позволяет выделить в горных системах вертикальные пояса.

Вертикальные пояса сходны с горизонтальными зонами в том смысле, что сменяются при движении вверх примерно в том же порядке (начиная от той широтной зоны, в которой расположена горная страна), в каком сменяются широтные зоны при движении от экватора к полюсам. Но вертикальные пояса не являются точными копиями аналогичных широтных зон, так как на них оказывают влияние местные условия (расчлененность рельефа, различие экспозиций склонов, высота гор, история развития местности и т. д.).

Несмотря на некоторые черты сходства вертикальной поясности в разных горных системах, последняя проявляется по-разному на различных материках и географических широтах. Степень выраженности вертикальной поясности, т. е. количество вертикальных поясов, высота их, непрерывность протяжения, флористический и фаунистический состав зависят от положения горной системы, ее широты, направления хребтов, степени расчлененности, истории формирования и некоторых других причин.

Продемонстрируем это на примере двух горных систем (Верхоянский хребет и Большой Кавказ).

а) Верхоянский хребет, вернее целая система хребтов, по своим размерам в несколько раз превышает систему хребтов Большого Кавказа. Несмотря на это, Верхоянский хребет имеет менее разнообразную природу, т. е. в его пределах выражено меньшее количество вертикальных поясов, чем на Большом Кавказе, да и аналогичные пояса этих горных систем резко различаются по характеру растительности, почв и животного мира.

Верхоянский хребет расположен в умеренном поясе, в зоне тайги, на северо-востоке Сибири. Климат здесь отличается большой суровостью. Близ хребта находится «полюс холода»; грунт круглый год скован мерзлотой; дуют пронзительные ветры; количество осадков незначительно (200--300 мм в год).

Склоны хребта от основания и до высоты примерно 1 тыс. м покрыты тайгой, в северной части редкостойной, состоящей из даурской лиственницы (Larix dahurica). Последняя приспособлена к обитанию в самых суровых условиях, на мерзлом грунте. Под тайгой развиты подзолистые почвы. Пояс тайги сменяется поясом субальпийских кустарников (на подзолистых почвах), наибольшее распространение из которых имеет кедровый стланик (Pinus pumila) -- стелющийся вид кедровой сосны. Выше 1000--1500 м начинается гольцовый пояс, т. е. горная лишайниково-щебенчатая тундра с ягелем (Cladonia), куропаточьей травой (Dryas punctata), лапчаткой (Potentilla nivea) и др. Такова скудная растительность Верхоянского хребта.

б) Большой Кавказ расположен на границе умеренного и субтропического климатических поясов. Одно это уже заставляет предполагать на Большом Кавказе разнообразие природных условий в виде значительного количества вертикальных поясов и различия их на северном и южном склонах. Кроме того, вертикальная поясность осложняется здесь нарастанием сухости с запада на восток. Все эти факторы очень разнообразят на Большом Кавказе вертикальную поясность и приводят к различиям ее на северном и южном склонах, а также на западе и на востоке.

При подъеме в горы со стороны Рионской низменности мы встретим следующие вертикальные пояса:

  • 1. Пояс реликтовых колхидских лесов, развитых преимущественно на подзолисто-желтоземных почвах. Основу леса здесь составляют широколиственные породы: дуб Гартвиса (Quercus hartwissiana), дуб грузинский (Quercus iberica), благородный каштан (Castanea satwa), бук восточный (Fagus orientalis), граб (Carpinus caucasica), В подлеске развиты вечнозеленые кустарники: понтийский рододендрон (Rhododendron ponticum), лавр (Laurus nobiles) и др.
  • 2. С высоты 600 ж и до высоты около 1200 м тянется пояс буковых лесов (темных и влажных), состоящих главным образом из восточного бука, к которому присоединяются другие широколиственные породы. В этом: поясе развиты горнолесные бурые почвы.
  • 3. Еще выше протягивается пояс хвойных и хвойно-широколиственных лесов, состоящих из кавказской ели (Picea orientalis), кавказской пихты. (Abies nordmanniana) и восточного бука; под ними развиты горноподзо-лнстые и горнолесные бурые почвы.
  • 4. С высоты около 2000 м начинается субальпийский пояс -- высокотравных лугов и зарослей кавказского рододендрона (Rhododendron caucasicum) на горнолуговых почвах. Еще выше тянется альпийский пояс, где альпийские луга, развитые на горнолуговых почвах, чередуются с почти обнаженными скалами и осыпями. И, наконец, последним является нивальный пояс -- область распространения вечных снегов и ледников.

Северный склон Западного Кавказа отличается от южного отсутствием пояса колхидских лесов, который здесь заменяется поясом дубовых лесов, состоящих главным образом из дуба (Quercus petraca). Остальные вертикальные пояса несколько отличаются от вышеуказанных своим флористическим составом.

Совершенно другой характер вертикальной поясности наблюдается на Восточном Кавказе. У подножия склона располагаются пустыни и полупустыни Куринской низменности на сероземных, бурых и каштановых почвах, пустыни и полупустыни на крайнем востоке поднимаются в горы до высоты 800 ж. Главным их представителем является полынь Ганзена (Artemisia Hanseniana). Выше следует пояс степей, на горных черноземах и темно-каштановых почвах, который при движении на запад постепенно выклинивается.

Выше (в среднем на высоте 500--1200 м) расположен пояс дубовых лесов с примесью других широколиственных пород (грузинский дуб, кавказский граб) на коричневых почвах. Там, где леса вырублены, широким развитием пользуется нагорно-ксерофитная растительность (щибляк), состоящая преимущественно из держидерева (Paliurus spina).

На высоте 1200--2000 м тянется пояс буковых и буково-грабовых лесов, которые у верхней границы леса сменяются зарослями восточного дуба (Quercus macranthera). Хвойные леса на Восточном Кавказе отсутствуют. Почвы бурые лесные.

На высоте 2000--2500 м развиты субальпийские луга, которые отличаются от таковых Западного Кавказа сильной остепненностью и низким травостоем (высокогорные степи). Выше они переходят в альпийские луга. Почвы горнолуговые. И, наконец, на максимальных высотах развит нивальный пояс, который имеет на Восточном Кавказе незначительное распространение.

Северный склон Восточного Кавказа (включая Дагестан) отличается отсутствием у подножия пустынь, большей ксерофитностью высокогорных лугов (высокогорные степи на горных лугово-степных почвах) и большим развитием нагорно-ксерофитной растительности.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Природная зональность - одна из наиболее ранних закономерностей в науке, представления о которой углублялись и совершенствовались одновременно с развитием географии. Зональность, наличие природных поясов на известной Ойкумене находили греческие ученые V в. до н.э. Геродот (485-425 гг. до н.э.) и Эвдоникс из Книда (400-347 до н.э.), различающий пять зон: тропическую, две умеренные и две полярные. А несколько позже римский философ и географ Посидоний (135-51 гг. до н.э.) еще более развернул учение о природных поясах, отличающихся один от другого климатом, растительностью, гидрографией, особенностями состава и занятий населения. Широта местности получила у него преувеличенное значение, вплоть до того, что она влияет якобы на «вызревание» драгоценных камней.

Велик вклад в учение о природной зональности немецкого естествоиспытателя А. Гумбольта. Главной особенностью его работ было то, что он каждое явление природы рассматривал как часть единого целого, связанную с остальной средой цепью причинных зависимостей.

Зоны Гумбольта - биоклиматические по своему содержанию. Наиболее полно его взгляды о зональности отражены в книге «География растений», благодаря чему он заслуженно считается одним из основоположников одноименной науки.

Зональный принцип был использован уже в ранний период физико-географического районирования России, относящейся ко второй половине XVIII - началу XIX столетия. Имеются в виду географические описания России А.Ф. Бишинга, С.И. Плещеева и Е.Ф. Зябловского. Зоны этих авторов имели комплексный, природохозяйственный характер, но вследствие ограниченности знаний были крайне схематичными.

Современные представления о географической зональности основываются на трудах В.В. Докучаева и Ф.Н. Милькова.

Широкому признанию взглядов В.В. Докучаева во многом способствовали труды его многочисленных учеников - Н.М. Сибирцева, К.Д. Глинки, А.Н. Краснова, Г.И. Танфильева и др.

Дальнейшие успехи в развитии природной зональности связаны с именами Л.С. Берга и А.А. Григорьева.

А.А. Григорьеву принадлежат теоретические изыскания о причинах и факторах географической зональности. Он приходит к заключению, что в формировании зональности наряду с величиной годового радиационного баланса и количества годовых осадков громадную роль играет их соотношение, степень их соразмерности. Им же была выполнена большая работа по характеристике природы основных географических поясов суши. В центре этих во многом оригинальных характеристик - физико-географические процессы, определяющие ландшафты поясов и зон.

Зональность - важнейшее свойство, выражение упорядоченности структуры географической оболочки Земли. Конкретные проявления зональности исключительно разнообразны и обнаруживаются как в физико-географических, так и в экономико-географических объектах. Ниже речь пойдет кратко о географической оболочке Земли, как о главном изучаемом объекте, а далее конкретно и подробно о законе зональности, его проявлениях в природе, а именно, в системе ветров, существовании климатических зон, зональности гидрологических процессов, почвообразования, растительности и т.д.

1 . Географическая оболочка Земли

1.1 Общая характеристика географической оболочки

Географическая оболочка - наиболее сложная и разнообразная (контрастная) часть Земли. Ее специфические особенности сформировались в ходе длительного взаимодействия природных тел в условиях земной поверхности.

Одна из характерных особенностей оболочки - большое разнообразие вещественного состава, значительно превышающее разнообразие вещества, как недр Земли, так и верхних (внешних) геосфер (ионосферы, экзосферы, магнитосферы). В географической оболочке вещество встречается в трех агрегатных состояниях, обладает широким диапазоном физических характеристик - плотности, теплопроводности, теплоемкости, вязкости, раздробленности, отражательной способности и др.

Поражает большое разнообразие химического состава и активности вещества. Вещественные образования географической оболочки неоднородны по структуре. Выделяют косное, или неорганическое, вещество, живое (сами организмы), биокосное вещество.

Другая особенность географической оболочки - большое разнообразие поступающих в нее видов энергии и форм ее преобразования. Среди многочисленных трансформаций энергии особое место занимают процессы ее накопления (например, в виде органического вещества).

Неравномерное распределение энергии на земной поверхности, вызванное шарообразностью Земли, сложным распределением суши и океана, ледников, снегов, рельефа земной поверхности, и разнообразие типов вещества определяют неравновесность географической оболочки, что служит основой для возникновения разнообразных движений: потоков энергии, циркуляции воздуха, воды, почвенных растворов, миграции химических элементов, химических реакций и т.д. Движения вещества и энергии связывают все части географической оболочки, обусловливая ее целостность.

В ходе развития географической оболочки как материальной системы происходило усложнение ее структуры, увеличение разнообразия вещественного состава и энергетических градиентов. На определенном этапе развития оболочки появилась жизнь - наиболее высокая форма движения материи. Возникновение жизни - закономерный результат эволюции географической оболочки. Деятельность живых организмов привела к качественному изменению природы земной поверхности.

Существенное значение для возникновения и развития географической оболочки имеет совокупность планетарных факторов: масса Земли, расстояние до Солнца, скорость вращения вокруг оси и по орбите, наличие магнитосферы, обеспечивших определенную термодинамическую взаимодействий - основы географических процессов и явлений. Изучение ближайших космических объектов - планет Солнечной системы - показало, что только на Земле сложились условия, благоприятные для возникновения достаточно сложной материальной системы.

В ходе развития географической оболочки возрастала ее роль как фактора собственного развития (саморазвития). Большое самостоятельное значение имеют состав и масса атмосферы, океана и ледников, соотношение и размеры площадей суши, океана, ледников и снегов, распределение суши и моря по земной поверхности, положение и конфигурация форм рельефа различного масштаба, различных типов природной среды и т.д.

На достаточно высоком уровне развития географической оболочки, ее дифференциации и интеграции возникли сложные системы - природные территориальные и аквальные комплексы.

Перечислим некоторые важнейшие параметры географической оболочки и ее крупных структурных элементов.

Площадь земной поверхности 510,2 млн. км 2 . Океан занимает 361,1 млн. км 2 (70,8%), суша - 149,1 млн. км 2 (29,2%). Выделяют шесть крупных массивов суши - материков, или континентов: Евразию, Африку, Северную Америку, Южную Америку, Антарктиду и Австралию, а также многочисленные острова.

Средняя высота суши 870 м, средняя глубина океана 3704 м. Океаническое пространство обычно подразделяют на четыре океана: Тихий, Атлантический, Индийский и Северный Ледовитый.

Существует мнение о целесообразности выделения приантарктических вод Тихого, Индийского и Атлантического океанов в особый Южный океан, так как этот регион отличается особым динамическим и термическим режимом.

Распределение материков и океанов по полушариям и широтам неравномерно, что служит объектом специального анализа.

Для природных процессов важное значение имеет масса объектов. Массу географической оболочки точно определить невозможно вследствие неопределенности ее границ.

1.2 Горизонтальная структура географической оболочки

Дифференциация географической оболочки в горизонтальном направлении выражается в территориальном распределении геосистем, которые представлены тремя уровнями размерности: планетарным, или глобальным, региональным и локальным. Важнейшими факторами, определяющими структуру геосистем на глобальном уровне, являются шарообразность Земли и замкнутость пространства географической оболочки. Они определяют поясно-зональный характер распределения физико-географических характеристик и замкнутость, кругообразность движений (круговороты).

Распределение суши, океана и ледников также является важным фактором, обусловливающим известную мозаичность не только внешнего облика земной поверхности, но и типов процессов.

Динамическим фактором, воздействующим на направление движений вещества в географической оболочке, является сила Кориолиса.

Перечисленные факторы определяют общие особенности атмосферной и океанической циркуляции, которая зависит от планетарной структуры географической оболочки.

На региональном уровне на первый план выступают различия в местоположениях и очертаниях материков и океанов, рельефе поверхности суши, определяющие особенности распределения тепла и влаги, типов циркуляции, особенности расположения географических зон и другие отклонения от общей картины планетарных закономерностей. В региональном плане существенно положение территории относительно береговой линии, центра или осевой линии материка или акватории и т.д.

От этих пространственных факторов зависит характер взаимодействия между региональными геосистемами (морской или континентальный климат, муссонная циркуляция или преобладание западного переноса и т.д.).

Существенное значение имеют конфигурация региональной геосистемы, границы ее с другими геосистемами, степень контрастности между ними и т.д.

На локальном уровне (малые части региона площадью от десятков квадратных метров до десятков квадратных километров) факторами дифференциации являются различные детали строения рельефа (мезо- и микроформы - речные долины, водоразделы и т.п.), состав горных пород, их физические и химические свойства, форма и экспозиция склонов, тип увлажнения и другие частные особенности, придающие земной поверхности дробную неоднородность.

1. 3 Поясно-зональные структуры

Многие физико-географические явления распределяются на земной поверхности в форме вытянутых преимущественно вдоль параллелей или субширотно (т.е. под некоторым углом к ним) полос. Это свойство географических явлений называется зональностью. Такая пространственная структура свойственна, прежде всего, климатическим показателям, растительным группировкам, типам почв; она проявляется в гидрологических и геохимических явлениях, как производная от первых. В основе зональности физико-географических явлений находится известная закономерность поступления на земную поверхность солнечной радиации, приход которой убывает от экватора к полюсам по закону косинуса. Если бы не особенности атмосферы и подстилающей поверхности, то приход солнечной радиации - энергетической основы всех процессов в оболочке - в точности определялся бы этим законом. Однако земная атмосфера имеет различную прозрачность в зависимости от облачности, а также запыленности, количества водяного пара и других компонентов и примесей. Распределение прозрачности атмосферы имеет, в числе прочих, зональную составляющую, что легко заметить на космическом снимке Земли: на нем полосы облаков образуют пояса (в особенности вдоль экватора и в умеренных и полярных широтах). Таким образом, на правильное закономерное убывание прихода солнечной радиации от экватора к полюсам накладывается более пестрая картина прозрачности атмосферы, выступающей в качестве дифференцирующего фактора солнечной радиации.

От солнечной радиации зависит температура воздуха. Однако на характер ее распределения влияет еще один дифференцирующий фактор - термические свойства земной поверхности (теплоемкость, теплопроводность), обусловливающий еще большую мозаичность распределения температур (по сравнению с солнечной радиацией). На распределение тепла, а, следовательно, и температуры поверхности влияют океанические и воздушные течения, образующие системы переноса тепла.

Еще более сложно распределяются на земном шаре атмосферные осадки. Они имеют две четко выраженные составляющие: зональную и секторную, связанные с положением на западной или восточной части континента, на суше или на море. Закономерности пространственного распределения перечисленных климатических факторов представлены на картах Физико-географического атласа мира.

Совместное воздействие тепла и влаги является тем основным фактором, который определяет большинство физико-географических явлений. Поскольку в распределении влаги и, особенно, тепла сохраняется поширотная ориентация, то и все производные от климата явления ориентированы соответствующим образом. Создается сопряженная пространственная система, имеющая поширотную структуру. Она называется географической поясностью. Поясная структура природных явлений на земной поверхности впервые достаточно отчетливо была отмечена А. Гумбольдтом, хотя о тепловых поясах, т.е. основе географической поясности, знали еще в Древней Греции. В конце прошлого века В.В. Докучаевым был сформулирован мировой закон зональности. В первой половине нашего века ученые стали говорить о географических зонах - вытянутых территориях с однотипным характером многих физико-географических явлений и их взаимодействий.

2 . Закон зональности

2.1 Понятие зональности

Помимо территориальной дифференциации вообще, характернейшей структурной чертой географической оболочки Земли является особая форма этой дифференциации - зональность, т.е. закономерное изменение всех географических компонентов и географических ландшафтов по широте (от экватора к полюсам). Основные причины зональности - форма Земли и положение Земли относительно Солнца, а предпосылка - падение солнечных лучей на земную поверхность под углом, постепенно уменьшающимся в обе стороны от экватора. Не будь этой космической предпосылки, не было бы и зональности. Но очевидно также, что если бы Земля была не шаром, а плоскостью, как угодно ориентированной к потоку солнечных лучей, лучи падали бы на нее всюду одинаково и, следовательно, нагревали бы плоскость одинаково во всех ее точках. Есть на Земле черты, внешне напоминающие широтную географическую зональность, например последовательная смена с юга на север поясов конечных морен, нагроможденных отступавшим ледниковым покровом. Говорят иногда о зональности рельефа Польши, потому, что здесь с севера на юг сменяют друг друга полосы приморских равнин, конечноморенных гряд, ореднепольских низменностей, возвышенностей на складчато-глыбовом основании, древних (герцинских) гор (Судеты) и молодых (третичных) складчатых гор (Карпаты). Говорят даже о зональности мегарельефа Земли. Однако, только то, что прямо или косвенно обусловлено изменением угла падения солнечных лучей на земную поверхность, и может относиться к подлинно зональным явлениям. То, что похоже на них, но возникает по другим причинам, надо называть иначе.

Г.Д. Рихтер, следуя А.А. Григорьеву, предлагает различать понятия зональности и поясности, подразделяя при этом пояса на радиационные и тепловые. Радиационный пояс определяется количеством поступающей солнечной радиации, закономерно убывающим от низких широт к высоким.

На поступление это влияет форма Земли, но не влияет характер земной поверхности, оттого границы радиационных поясов совпадают с параллелями. Формирование тепловых поясов контролируется уже не только солнечной радиацией. Здесь имеют значение и свойства атмосферы (поглощение, отражение, рассеяние лучистой энергии), и альбедо земной поверхности, и перенос тепла морскими и воздушными течениями, вследствие чего границы тепловых поясов нельзя совместить с параллелями. Что касается географических зон, то их существенные черты обусловлены соотношением тепла и влаги. Соотношение это зависит, конечно, от количества радиации, но также и от факторов, лишь частично привязанных к широте (количество адвективного тепла, количество влаги в виде осадков и стока). Вот почему зоны не образуют непрерывных полос, и простирание их вдоль параллелей скорее частный случай, чем общий закон.

Если суммировать приведенные выше соображения, то их можно свести к тезису: свое конкретное содержание зональность приобретает в особых условиях географической оболочки Земли.

Для понимания самого принципа зональности довольно безразлично, назовем ли мы пояс зоной или зону поясом; эти оттенки имеют больше таксономическое, чем генетическое значение, ибо количество солнечной радиации одинаково образует фундамент существования и поясов, и зон.

2.2 Периодический закон географической зональности

Открытие В. Докучаевым географических зон как целостных природных комплексов было одним из крупнейших событий в истории географической науки. После этого на протяжении почти полувека географы занимались конкретизацией и как бы «вещественным наполнением» этого закона: уточнялись границы зон, делались их подробные характеристики, накопление фактического материала позволило выделить внутри зон подзоны, установлена была неоднородность зон по простиранию (выделение провинций), исследовались причины выклинивания зон и отклонения их направления от теоретического, разрабатывалась группировка зон в пределах более крупных таксономических подразделений - поясов и т.д.

Принципиально новый шаг в проблеме зональности был сделан А.А. Григорьевым и М.И. Будыко, которые подвели под явления зональности физический и количественный базис и сформулировали периодический закон географической зональности, лежащий в основе структуры ландшафтной оболочки Земли.

Закон опирается на учет трех тесно взаимосвязанных факторов. Один из них - годовой радиационный баланс (R) земной поверхности, т.е. разница между количеством тепла, поглощаемого этой поверхностью, и количеством тепла, отдаваемого ею. Второй - это годовая сумма атмосферных осадков (r). Третий, получивший название радиационного индекса сухости (К), представляет отношение первых двух:

где L - скрытая теплота испарения.

Размерность: R в ккал/см 2 в год, r - в г/см 2 , L - в ккал/г в год, - в ккал/см 2 .

Оказалось, что одно и то же значение К повторяется в зонах, относящихся к разным географическим поясам. При этом величина К определяет тип ландшафтной зоны, а величина R - конкретный характер и облик зоны (таблица I). Например, К>3 во всех случаях указывает на тип пустынных ландшафтов, но в зависимости от величины R, т.е. от количества тепла, облик пустыни меняется: при R = 0-50 ккал/см 2 в год - это пустыня умеренного климата, при R = 50-75 - пустыня субтропическая и при R>75 - пустыня тропическая.

Если К близок к единице, это значит, что между теплом и влагой существует соразмерность: осадков выпадает столько, сколько может испариться. Такой индекс обеспечивает биокомпонентам бесперебойность процессов испарения и транспирации, а также аэрации грунтов. Отклонение К в обе стороны от единицы создает диспропорции: при недостатке влаги (К>1) нарушается бесперебойное течение процессов испарения и транспирации, при избытке влаги (К<1) - процессов аэрации; и то и другое сказывается на биокомпонентах отрицательно.

Значение работ М.И. Будыко и А.А. Григорьева двоякое: 1) подчеркнута характерная черта зональности - ее периодичность, что может быть сопоставимо с важностью открытия Д.И. Менделеевым периодического закона химических элементов; 2) установлены ориентировочные количественные показатели для проведения границ ландшафтных зон.

2.3 Л анд шафтные зон ы

Современные представления о связях и взаимодействии отдельных компонентов ландшафтной оболочки Земли позволяют построить теоретическую модель ландшафтных зон на суше на примере так называемого однородного идеального материка (рис. 1). Размеры его соответствуют половине площади суши земного шара, конфигурация - ее расположению по широтам, а поверхность - невысокая равнина; на месте горных систем типы зон экстраполированы.

Из схемы гипотетического материка необходимо сделать два основных вывода: 1) большинство географических зон не имеет западно-восточного простирания и, как правило, не опоясывает земной шар и 2) у каждого пояса свои наборы зон.

Объяснение этого в том, что суша и море на Земле размещены неравномерно, берега континентов омываются в одних случаях холодными, в других - теплыми морскими течениями, а рельеф суши весьма разнообразен. Распределение зон зависит также и от циркуляции атмосферы, т.е. от направления адвекции тепла и влаги. Если господствует меридиональный перенос (т.е. совпадает с широтным изменением количества радиационного тепла), зональность будет чаще широтная, в случае западного или восточного (т.е. зонального) переноса широтная зональность скорее исключение, зоны приобретают различное простирание и очертания (полосы, пятна и т.п.) и не очень протяженны. При этом существенные особенности природных зон складываются под воздействием увлажнения и адвекции тепла (или холода) в теплое время года.

Анализу действительной картины географической зональности должно предшествовать разделение земной поверхности на географические пояса. Сейчас обычно выделяют пояса: полярные, субполярные, умеренные, тропические, субтропические, субэкваториальные и экваториальный. Иными словами, под географическим поясом понимают широтное подразделение географической оболочки, обусловленное климатом. Однако главный смысл выделения географических поясов заключается в обрисовке лишь самых общих черт распределения первичного фактора зональности, т.е. тепла, чтобы на этом общем фоне можно было наметить и первые самые крупные детали (тоже достаточно общего характера) - ландшафтные зоны. Этому требованию вполне удовлетворяет деление каждого полушария на пояса холодный, умеренный и жаркий. Границы этих поясов проводятся по изотермам, которые в конкретных величинах отображают влияние на распределение тепла всех факторов - инсоляции, адвекции, степени континентальности, высоты стояния Солнца над горизонтом, продолжительности освещения и т.д. По мнению В.Б. Сочавы, основными звеньями планетарной зональности надо считать всего три пояса: северный внетропический, тропический и южный внетропический.

В последнее время в географической литературе проступает тенденция к увеличению не только числа географических поясов, но и числа ландшафтных зон. В.В. Докучаев в 1900 г. говорил о семи зонах (бореальная, северная лесная, лесостепная, черноземная, сухих степей, аэральная, латеритная), Л.С. Берг (1938) - о 12, П.С. Макеев (1956) описывает уже около трех десятков зон. В Физико-географическом атласе мира выделено 59 зональных (т.е. укладывающихся в зоны и подзоны) типов ландшафтов суши.

Ландшафтная (географическая, природная) зона есть крупная часть географического пояса, характеризующаяся господством какого-нибудь одного зонального типа ландшафта.

Названия ландшафтных зон даются чаще всего по геоботаническому признаку, так как растительный покров - чрезвычайно чуткий индикатор разнообразных природных условий. Необходимо, однако, иметь в виду два положения. Первое: ландшафтная зона не идентична ни геоботанической, ни почвенной, ни геохимической и никакой другой зоне, объективно выделяемой по отдельному компоненту ландшафтной оболочки Земли. В ландшафтной зоне тундр есть не только тип тундровой растительности, но и леса по долинам рек. В ландшафтную зону степей почвоведы укладывают и зону черноземов, и зону каштановых почв и т.п. Второе: облик любой ландшафтной зоны создается не только совокупностью современных природных условий, но и историей их формирования. В частности, систематический состав флоры и фауны сам по себе не дает представления о зональности. Черты зональности растительности и животному миру сообщает адаптация их представителей (а еще более - их сообществ, биоценозов) к экологической обстановке и как следствие выработка в процессе эволюции комплекса жизненных форм, отвечающего географическому содержанию ландшафтной зоны.

На первых этапах изучения зональности полагали как нечто само собой разумеющееся, что зональность южного полушария всего лишь зеркальное отражение зональности северного полушария, несколько ущербленное меньшими размерами материковых пространств. Как будет видно из дальнейшего, подобные предположения не оправдались, и от них приходится отказаться.

Опытам подразделения земного шара на ландшафтные зоны и описанию зон посвящена обширная литература. Схемы деления, несмотря на некоторые различия, во всех случаях убедительно доказывают реальность ландшафтных зон.

3 . П роявлени е зональности

3.1 Формы проявления

По причине зонального распределения солнечной лучистой энергии на Земле зональны: температуры воздуха, воды и почвы, испарение и облачность, атмосферные осадки, барический рельеф и системы ветров, свойства воздушных масс, климаты, характер гидрографической сети и гидрологические процессы, особенности геохимических процессов, выветривания и почвообразования, типы растительности и жизненные формы растений и животных, скульптурные формы рельефа, в известной степени типы осадочных пород, наконец, географические ландшафты, объединенные в связи с этим в систему ландшафтных зон.

Зональность тепловых условий известна была еще географам античного времени; у некоторых из них можно найти и элементы представлений о природных зонах Земли. А. Гумбольдт установил зональность и высотную поясность растительности. Но честь и заслуга подлинного научного открытия географической зональности принадлежит В.В. Докучаеву. Оно привело к огромным сдвигам в содержании географии и ее теоретического базиса. В.В. Докучаев называл зональность мировым законом. Однако было бы ошибкой понимать это буквально, так как ученый имел, конечно, в виду универсальность проявления зональности лишь на поверхности земного шара.

По мере удаления от земной поверхности (вверх или вниз) зональность постепенно затухает. Например, в абиссальной области океанов повсеместно господствует постоянная и довольно низкая температура (от -0,5 до +4°), солнечный свет сюда не проникает, растительных организмов нет, водные массы практически остаются почти в полном покое, т.е. нет причин, которые могли бы вызвать на океаническом дне возникновение и смену зон. Некоторый намек на зональность можно было бы усмотреть в распределении морских осадков: коралловые отложения приурочены к тропическим широтам, диатомовые илы - к полярным. Но это лишь пассивное отражение на морском дне тех зональных процессов, которые свойственны поверхности океана, где ареалы коралловых колоний и диатомовых водорослей действительно располагаются по законам зональности. Остатки же скорлупок диатомей и продукты разрушения коралловых построек попросту «спроектированы» на дно моря безотносительно к тем условиям, какие там существуют.

Размывается зональность и в высоких слоях атмосферы. Источник энергии нижней атмосферы - освещаемая Солнцем земная поверхность. Следовательно, солнечная радиация играет тут косвенную роль, и процессы в нижней атмосфере регулируются поступлением тепла от земной поверхности. Что касается верхней атмосферы, то наиболее существенные для нее явления - следствие прямого воздействия Солнца. Причина убывания температуры с высотой в тропосфере (в среднем 6° на каждый километр) - удаление от основного для тропосферы энергетического источника (Земли). Температура же высоких слоев от земной поверхности не зависит и определяется балансом лучистой энергии самих частиц воздуха. По-видимому, рубеж влияний лежит на высоте около 20 км, потому что выше (вплоть до 90-100 км) действует динамическая система, независимая от тропосферной.

Быстро исчезают зональные различия в земной коре. Сезонные и суточные колебания температуры охватывают слой горных пород толщиной не более 15-30 м; на этой глубине устанавливается постоянная температура, одинаковая круглый год и равная средней годовой температуре воздуха данной местности. Ниже постоянного слоя температура с глубиной нарастает. И ее распределение, как в вертикальном, так и в горизонтальном направлении дальше связано уже не с солнечной радиацией, а с источниками энергии земных недр, поддерживающей, как известно, азональные процессы.

Зональность во всех случаях затухает по мере приближения к границам ландшафтной оболочки, и это может послужить вспомогательным диагностическим признаком для установления этих границ.

Немалое значение в явлениях зональности имеют положение Земли в Солнечной системе и отчасти размеры Земли. На Плутоне, самом окраинном из членов Солнечной системы, получающем от Солнца в 1600 раз меньше тепла, чем Земля, нет никаких зон: его поверхность - сплошная ледяная пустыня. Луна вследствие своих малых размеров не смогла удержать вокруг себя атмосферу. Оттого на нашем спутнике нет ни воды, ни организмов, нет и видимых следов зональности. Зачаточная видимая зональность есть на Марсе: две полярные шапки и пространство между ними. Здесь причина эмбрионального характера зон не только расстояние от Солнца (оно в полтора раза больше земного), но и малая масса планеты (0,11 земной), вследствие чего сила тяжести меньше (0,38 земной) и атмосфера крайне разрежена: при 0° и давлении 1 кг/см 2 она «спрессовалась» бы в слой толщиной всего 7 м, и крыша любого нашего городского дома оказалась бы в этих условиях за пределами воздушной оболочки Марса.

Закон зональности встречал и встречает у отдельных авторов возражения. В 1930-х годах некоторые советские географы, главным образом почвоведы, взялись за «пересмотр» докучаевского закона зональности, а учение о климатических зонах даже объявлено было схоластическим. Реальное существование зон отрицалось таким соображением: земная поверхность в своем облике и строении настолько сложна и мозаична, что выделить на ней зональные черты можно только путем большой генерализации. Иными словами, конкретных зон в природе нет, они - плод абстрактно логического построения. Беспомощность подобной аргументации бросается в глаза, потому что: 1) любой общий закон (природы, общества, мышления) устанавливается методом генерализации, отвлечения от частностей, причем именно при помощи абстракции наука переходит от познания явления к познанию его сущности; 2) никакая генерализация не в состоянии выявить то, чего на самом деле нет.

Впрочем, «поход» против зональной концепции принес и положительные плоды: он послужил серьезным толчком к более подробной, чем у В.В. Докучаева, разработке проблемы внутренней разнородности природных зон, к формированию понятия об их провинциях (фациях). Отметим попутно, что многие противники зональности вскоре вновь вернулись в лагерь ее сторонников.

Другие ученые, не отрицая зональности вообще, отрицают лишь существование ландшафтных зон, полагая, что зональность - это только биоклиматическое явление, ибо она не затрагивает литогенную основу ландшафта, созданную азональными силами.

Ошибочность рассуждения проистекает из неверного понимания литогенной основы ландшафта. Если относить к ней целиком всю геологическую структуру, подстилающую ландшафт, тогда, конечно, никакой зональности ландшафтов, взятых во всей совокупности их компонентов, не существует, да и для изменения всего ландшафта потребуются миллионы лет. Полезно, однако, помнить, что ландшафты на суше возникают в областях контакта литосферы с атмосферой, гидросферой и биосферой. Стало быть, литосферу надо включать в ландшафт до той глубины, до которой простирается взаимодействие ее с экзогенными факторами. Такая литогенная основа неразрывно связана и меняется сопряженно со всеми остальными компонентами ландшафта. Ее невозможно оторвать от биоклиматических слагаемых, и она, следовательно, становится столь же зональной, как и эти последние. Кстати, живое вещество, входящее в биоклиматический комплекс, по своей природе азонально. Зональные черты оно приобрело в ходе адаптации к конкретным экологическим условиям.

3.2 Распределение тепла на Земле

В нагревании Земли Солнцем два основных механизма: 1) солнечная энергия передается через мировое пространство в форме лучистой энергии; 2) лучистая энергия, поглощенная Землей, преобразуется в тепловую.

Количество солнечной радиации, получаемое Землей, зависит:

от расстояния между Землей и Солнцем. Ближе всего к Солнцу Земля в начале января, дальше всего в начале июля; разница между этими двумя расстояниями - 5 млн. км, вследствие чего, Земля в первом случае получает на 3,4% больше, а во втором на 3,5% меньше радиации, чем при среднем расстоянии от Земли до Солнца (в начале апреля и в начале октября);

от угла падения солнечных лучей на земную поверхность, зависящего в свою очередь от географической широты, высоты Солнца над горизонтом (меняющейся в течение суток и по временам года), характера рельефа земной поверхности;

от преобразования лучистой энергии в атмосфере (рассеяние, поглощение, отражение обратно в мировое пространство) и на поверхности Земли. Среднее альбедо Земли - 43%.

Картина годового теплового баланса по широтным зонам (в калориях на 1 кв. см в 1 мин.) представлена в таблице II.

Поглощенная радиация к полюсам убывает, а длинноволновое излучение практически не меняется. Возникающие между низкими и высокими широтами температурные контрасты смягчаются переносом тепла морскими и главным образом воздушными течениями от низких широт к высоким; количество переносимого тепла указано в последней колонке таблицы.

Для общегеографических выводов важны также и ритмические колебания радиации из-за смены времен года, так как от этого зависит и ритмика теплового режима в той или иной местности.

По особенностям облучения Земли под разными широтами можно наметить и «черновые» контуры тепловых поясов.

В поясе, заключенном между тропиками, лучи Солнца в полдень все время падают под большим углом. Солнце дважды в году бывает в зените, разница в продолжительности дня и ночи невелика, приток тепла в году большой и сравнительно равномерный. Это - жаркий пояс.

Между полюсами и полярными кругами день и ночь могут длиться по отдельности больше суток. В долгие ночи (зимой) - сильное выхолаживание, так как притока тепла нет вовсе, но и в долгие дни (летом) нагревание незначительно вследствие низкого стояния Солнца над горизонтом, отражения радиации снегом и льдом и траты тепла на таяние снега и льдов. Это - холодный пояс.

Умеренные пояса располагаются между тропиками и полярными кругами. Так как Солнце летом стоит высоко, а зимой низко, колебания температуры в году довольно велики.

Однако помимо географической широты (стало быть, солнечной радиации) на распределение тепла на Земле влияют еще характер распределения суши и моря, рельеф, высота местности над уровнем моря, морские и воздушные течения. Если принять во внимание и эти факторы, то границы тепловых поясов нельзя совместить с параллелями. Оттого в качестве границ берут изотермы: годовые - для выделения того пояса, в котором годовые амплитуды температуры воздуха малы, и изотермы самого теплого месяца - для выделения тех поясов, где колебания температуры в году более резкие. По этому принципу на Земле различают такие тепловые пояса:

1) теплый, или жаркий , ограниченный в каждом полушарии годовой изотермой +20°, проходящей вблизи 30-й северной и 30-й южной параллели;

2-3) два умеренных пояса , которые в каждом полушарии лежат между годовой изотермой +20° и изотермой + 10° самого теплого месяца (соответственно июля или января); в Долине смерти (Калифорния) отмечена наивысшая на земном шаре июльская Температура + 56,7°;

4-5) два холодных пояса , в которых средняя температура самого теплого в данном полушарии месяца менее +10°; иногда из холодных поясов выделяют две области вечного мороза со средней температурой самого теплого месяца ниже 0°. В северном полушарии это внутренняя часть Гренландии и, возможно, пространство около полюса; в южном полушарии - все, что лежит к югу от 60-й параллели. Особенно холодна Антарктида; здесь в августе 1960 г. на станции Восток зарегистрирована самая низкая на Земле температура воздуха -88,3°.

Связь между распределением температуры на Земле и распределением приходящей солнечной радиации совершенно отчетливая. Однако прямая зависимость между убыванием средних величин приходящей радиации и понижением температуры при возрастании широты существует только зимой. Летом же в течение нескольких месяцев в районе Северного полюса по причине большей здесь продолжительности дня сумма радиации заметно выше, чем на экваторе (рис. 2). Если бы летом распределение температуры отвечало распределению радиации, то летняя температура воздуха в Арктике была бы близка к тропической. Этого нет только потому, что в полярных районах существует ледяной покров (альбедо снега в высоких широтах достигает 70-90% и много тепла затрачивается на таяние снега и льда). При его отсутствии в Центральной Арктике летняя температура была бы 10-20°, зимняя 5-10°, т.е. сформировался бы совсем другой климат, при котором арктические острова и побережья могли одеться богатой растительностью, если бы тому не препятствовали многосуточные и даже многомесячные полярные ночи (невозможность фотосинтеза). То же было бы и в Антарктиде, только с оттенками «континентальности»: лето было бы теплее, чем в Арктике (ближе к тропическим условиям), зима - холоднее. Стало быть, ледяной покров Арктики и Антарктики - это скорее причина, чем следствие низких температур в высоких широтах.

Эти данные и соображения, не нарушая фактической, наблюдаемой закономерности зонального распределения тепла на Земле, ставят проблему генезиса тепловых поясов в новом и несколько неожиданном разрезе. Получается, например, что оледенение и климат - это не следствие и причина, а два разных следствия одной общей причины: какое-то изменение природных условий вызывает оледенение, а уже под влиянием последнего происходят решающие изменения климата. И все же хотя бы локальное изменение климата должно предшествовать оледенению, ибо для существования льда нужны вполне определенные условия температуры и влажности. Местная масса льда может повлиять на местный климат, что даст ей возможность разрастись, затем изменить климат более обширного района, получая стимул к дальнейшему разрастанию, и т.д. Когда такой расползающийся «ледяной лишай» (термин Гернета) охватит огромное пространство, он и приведет к коренному изменению климата на этом пространстве.

3.3 Барическ ий рельеф и система ветров

зональность географический барический

В барическом поле Земли достаточно наглядно обнаруживается зональное распределение атмосферного давления, симметричное в обоих полушариях.

Максимальные величины давления приурочены к 30-35-м параллелям и районам полюсов. Субтропические зоны высокого давления выражены весь год. Однако летом из-за прогрева воздуха над материками они разрываются, и тогда над океанами обособляются отдельные антициклоны: в северном полушарии - североатлантический и северотихоокеанский, в южном - южно-атлантический, южноиндийский, южно-тихоокеанский и новозеландский (к северо-западу от Новой Зеландии).

Минимальное атмосферное давление - на 60-65-х параллелях обоих полушарий и в экваториальной зоне. Экваториальная барическая депрессия устойчива в течение всех месяцев, располагаясь своей осевой частью в среднем около 4° с. ш.

В средних широтах северного полушария барическое поле разнообразно и изменчиво, так как здесь обширные материки чередуются с океанами. В южном полушарии с его более однородной водной поверхностью барическое поле меняется незначительно. От 35° ю. ш. к Антарктике давление быстро падает, и полоса низкого давления окружает Антарктиду.

В соответствии с барическим рельефом существуют следующие зоны ветров:

1) приэкваториальный пояс штилей . Ветры сравнительно редки (так как господствуют восходящие движения сильно нагретого воздуха), а когда бывают, то переменны и шквалисты;

2-3) зоны пассатов северного и южного полушарий ;

4-5) области затишья в антициклонах субтропического пояса высокого давления; причина - господство нисходящих движений воздуха;

6-7) в средних широтах обоих полушарий - зоны преобладания западных ветров ;

8-9) в околополярных пространствах ветры дуют от полюсов в сторону барических депрессий средних широт, т.е. здесь обычны ветры с восточной составляющей .

Действительная циркуляция атмосферы сложнее, чем это отражено в изложенной выше климатологической схеме. Помимо зонального типа циркуляции (перенос воздуха вдоль параллелей) есть и меридиональный тип - перенос воздушных масс из высоких широт в низкие и обратно. В ряде областей земного шара под влиянием температурных контрастов между сушей и морем и между северным и южным полушариями возникают муссоны - устойчивые воздушные течения сезонного характера, меняющие направление от зимы к лету на противоположное или близкое к противоположному. На так называемых фронтах (переходных зонах между различными воздушными массами) образуются и движутся циклоны и антициклоны. В средних широтах обоих полушарий циклоны зарождаются главным образом в полосе между 40-ми и 60-ми параллелями и устремляются на восток. Область тропических циклонов лежит между 10 и 20° северной и южной широты над наиболее нагретыми частями океанов; эти циклоны перемещаются в западном направлении. Те антициклоны, которые следуют за циклонами, подвижнее, чем более или менее стационарные антициклоны субтропического пояса высокого давления или зимние барические максимумы над материками.

Циркуляция воздуха в верхней тропосфере, тропопаузе и в стратосфере иная, чем в нижней тропосфере. Там большую роль играют струйные течения - узкие зоны сильных ветров (на оси струи 35-40, подчас до 60-80 и даже до 200 м/сек) мощностью 2-4 км, а в длину - десятки тысяч километров (иногда они опоясывают весь земной шар), идущие в общем с запада на восток на высоте 9-12 км (в стратосфере - 20-25 км). Известны струйные течения средних широт, субтропические (между 25 и 30° с. ш. на высоте 12-12,5 км), западное стратосферное на полярном круге (только зимой), восточное стратосферное в среднем вдоль 20° с. ш. (только летом). Современная авиация вынуждена весьма считаться со струйными течениями, которые либо заметно тормозят скорость самолета (встречные), либо увеличивают ее (попутные).

3.4 Климатические зоны Земли

Климат - это результат взаимодействия многих природных факторов, главные из которых - приход и расход лучистой энергии Солнца, атмосферная циркуляция, перераспределяющая тепло и влагу, и влагооборот, практически неотделимый от атмосферной циркуляции. Атмосферная циркуляция и влагооборот, порожденные распределением тепла на Земле, в свою очередь влияют на тепловые условия земного шара, а следовательно, и на все то, что прямо или косвенно ими управляется. Причины и следствия переплетены здесь настолько тесно, что все три фактора должно рассматривать как сложное единство.

Каждый из перечисленных факторов зависит от географического положения местности (широты, высоты над уровнем моря) и характера земной поверхности. Широта определяет величину притока солнечной радиации. С высотой меняются температура и давление воздуха, содержание в нем влаги, условия движения ветров. Особенности земной поверхности (океан, суша, теплые и холодные морские течения, растительный, почвенный, снежный и ледяной покров и т.п.) сильно сказываются на радиационном балансе и, стало быть, на циркуляции атмосферы и влагообороте. В частности, под мощным преобразующим влиянием подстилающей поверхности на воздушные массы формируются два основных типа климата: морской и континентальный.

Так как все факторы климатообразования, кроме рельефа и расположения суши и моря, имеют тенденцию к зональности, вполне естественно, что и климаты зональны.

Б.П. Алисов подразделяет земной шар на следующие климатические зоны(рис. 4):

1. Экваториальная зона. Преобладают слабые ветры. Различия в температуре и влажности воздуха между временами года очень невелики и меньше суточных. Средние месячные температуры от 25 до 28°. Осадков - 1000-3000 мм. Господствует жаркая влажная погода с частыми ливнями и грозами.

Субэкваториальные зоны. Характерна сезонная смена воздушных масс: летом муссон дует со стороны экватора, зимой - со стороны тропиков. Зима лишь немного прохладнее лета. При господстве летнего муссона устанавливается примерно такая же погода, как в экваториальной зоне. Внутри материков осадков редко более 1000-1500 мм, но на обращенных к муссону склонах гор количество осадков доходит до 6000-10 000 мм в год. Почти все они выпадают летом. Зима сухая, суточная амплитуда температуры по сравнению с экваториальной зоной увеличивается, погода стоит безоблачная.

Тропические зоны обоих полушарий. Преобладание пассатов. Погода преимущественно ясная. Зима теплая, но заметно холоднее лета. В тропических зонах можно выделить три типа климата: а) области устойчивых пассатов с прохладной, почти бездождной погодой, высокой влажностью воздуха, с развитыми на побережьях туманами и сильными бризами (западный берег Южной Америки между 5 и 20° с. ш., побережье Сахары, пустыня Намиб); б) пассатные области с проходящими дождями (Центральная Америка, Вест-Индия, Мадагаскар и др.); в) жаркие засушливые области (Сахара, Калахари, большая часть Австралии, север Аргентины, южная половина Аравийского полуострова).

Субтропические зоны. Отчетливый сезонный ход температуры, осадков и ветров. Возможно, но весьма редко выпадение снега. За исключением муссонных областей, летом преобладает антициклоническая погода, зимой - циклоническая деятельность. Типы климатов: а) средиземноморский с ясным и тихим летом и дождливой зимой (Средиземноморье, среднее Чили, Капская земля, юго-запад Австралии, Калифорния); б) муссонные области с жарким дождливым летом и относительно холодной и сухой зимой (Флорида, Уругвай, северный Китай); в) сухие области с жарким летом (южное побережье Австралии, Туркмения, Иран, Такла-Макан, Мексика, сухой запад США); г) равномерно увлажненные в течение года области (юго-восток Австралии, Тасмания, Новая Зеландия, средняя часть Аргентины).

Зоны умеренного климата. Над океанами во все сезоны - циклоническая деятельность. Частые осадки. Преобладание западных ветров. Сильные температурные различия между зимой и летом и между сушей и морем. Зимой выпадает снег. Главные типы климатов: а) зима с неустойчивой погодой и сильными ветрами, летом погода более спокойная (Великобритания, норвежское побережье, Алеутские острова, побережье залива Аляска); б) разные варианты материкового климата (внутренняя часть США, юг и юго-восток Европейской части России, Сибирь, Казахстан, Монголия); в) переходный от материкового к океаническому (Патагония, большая часть Европы и Европейской части России, Исландия); г) муссонные области (Дальний Восток, Охотское побережье, Сахалин, север Японии); д) области с влажным прохладным летом и холодной снежной зимой (Лабрадор, Камчатка).

Субполярные зоны. Большие температурные различия между зимой и летом. Вечная мерзлота.

Полярные зоны. Большие годовые и малые суточные колебания температуры. Осадков мало. Лето холодное и туманное. Типы климатов: а) с относительно теплой зимой (побережья моря Бофорта, Баффинова Земля, Северная Земля, Новая Земля, Шпицберген, Таймыр, Ямал, Антарктический полуостров); б) с холодной зимой (Канадский архипелаг, Новосибирские острова, побережья морей Восточносибирского и Лаптевых); в) с очень холодной зимой и температурой лета ниже 0° (Гренландия, Антарктида).

3.5 Зональ ность гидрологических процессов

Формы гидрологической зональности разнообразны. Зональность теплового режима вод в связи с общими особенностями распределения температуры по Земле очевидна. Зональными чертами обладает минерализация подземных вод и глубина их залегания - от ультрапресных и близких к дневной поверхности в тундре и экваториальных лесах до солоноватых и соленых вод глубокого залегания в пустынях и полупустынях.

Зонален коэффициент стока: в России в тундре он равен 0,75, в тайге - 0,65, в зоне смешанных лесов - 0,30, в лесостепи - 0,17, в степи и полупустынях - от 0,06 до 0,04.

Зональны соотношения между разными видами стока: в ледниковом поясе (выше снеговой линии) сток имеет форму движения ледников и лавин; в тундре преобладает почвенный сток (при временных водоносных горизонтах в пределах почвы) и поверхностный сток болотного типа (когда уровень грунтовых вод стоит выше поверхности); в лесной зоне господствует грунтовый сток, в степях и полупустынях - поверхностный (склоновый) сток, а в пустынях стока почти нет. На русловом стоке тоже лежит печать зональности, получившей отражение в водном режиме рек, зависящем от условий их питания. М.И. Львович отмечает следующие особенности.

В экваториальном поясе речной сток круглый год обильный (Амазонка, Конго, реки Малайского архипелага).

Летний сток по причине преобладания летних осадков характерен для тропического пояса, а в субтропиках - для восточных окраин материков (Ганг, Меконг, Янцзы, Замбези, Парана).

В умеренном поясе и на западных окраинах материков в субтропическом поясе выделяются четыре типа режима рек: в средиземноморской зоне - преобладание зимнего стока, так как максимум осадков здесь зимой; преобладание зимнего стока при равномерном распределении осадков в году, но при сильном испарении летом (Британские острова, Франция, Бельгия, Нидерланды, Дания); преобладание весеннего дождевого стока (восточная часть Западной и Южной Европы, большая часть США и др.); преобладание весеннего снегового стока (Восточная Европа, Западная и Средняя Сибирь, север США, юг Канады, юг Патагонии).

В бореально-субарктическом поясе летом снеговое питание, зимой иссякание стока в районах вечной мерзлоты (северные окраины Евразии и Северная Америка).

В высокоширотных поясах вода почти весь год находится в твердой фазе (Арктика, Антарктика).

Подобные документы

    Презентация по биологии, выполненная учеником 6-го класса. Тема – Северная Америка. Российско-американская торговая компания. Российские Колумбы. Рельеф, строение и полезные ископаемые. Особенности географической зональности. Континентальный климат.

    презентация , добавлен 22.12.2008

    Солнце как источник тепла, взаимосвязь вращения Земли и географической широты. Типы климатических зон и их распространение: экваториальный, субэкваториальный, тропический, субтропический, умеренный, субполярный и полярный. Значение климата для жизни.

    курсовая работа , добавлен 25.10.2015

    Основные компоненты географической (земной) оболочки: литосфера, атмосфера, гидросфера и биосфера. Ее строение и свойства. Природные комплексы суши и океана. Этапы освоения Земли человеком. Природная зональность планеты. Классификация стран мира.

    реферат , добавлен 20.06.2009

    Современные природные условия на земной поверхности, их эволюция и закономерности изменения. Основная причина зональности природы. Физические свойства водной поверхности. Источники атмосферных осадков на суше. Широтная географическая зональность.

    реферат , добавлен 04.06.2010

    Состав и строение атмосферы Земли. Значение атмосферы для географической оболочки. Сущность и характерные свойства погоды. Классификация климатов и характеристика видов климатических поясов. Общая циркуляция атмосферы и факторы, влияющие на нее.

    реферат , добавлен 28.01.2011

    Современное состояние географической оболочки как результат ее эволюции. Сущность геосистемы по В.Б. Сочаве. Общая характеристика комплекса физико-географической науки. Анализ развития основных представлений о системе и комплексе географической науки.

    реферат , добавлен 29.05.2010

    Характеристика природных компонентов. Природная основа геосистем, ландшафтная сфера и структурная часть географической оболочки. Геологическое строение и рельеф, климат и воды. Почвенно-растительный покров, животный мир и биоклиматические условия.

    курсовая работа , добавлен 29.11.2011

    Тектоника и общие черты рельефа Европы и Азии. Нефтяные и газовые месторождения. Отличительная черта Китайской платформы. Влияние климата на рельефообразование через гидросферу и растительный покров. Схема современной морфоклиматической зональности.

    курсовая работа , добавлен 18.01.2014

    Изучение внутреннего строения Земли. Внутреннее строение, физические свойства и химический состав Земли. Движение земной коры. Вулканы и землетрясения. Внешние процессы, преображающие поверхность Земли. Минералы и горные породы. Рельеф земного шара.

    реферат , добавлен 15.08.2010

    Понятие о геосфере и развитии земной поверхности. Распределение солнечной энергии и климатические пояса. Гидротермические условия и продуктивность биомассы. Географические пояса, динамика географической зональности. Проблемы ландшафтной дифференциации.

Многие физико-географические явления в географической оболочке распределяются в форме полос, вытянутых вдоль параллелей, или под некоторым углом к ним. Это свойство географических явлений называется зональностью (закон географической зональности) .

Представления о природной зональности возникли еще у древнегреческих ученых. Так, в V в. до н.э. и Эвдоникс отмечали пять зон Земли: тропическую, две умеренные и две полярные. Большой вклад в учение о природной зональности внес немецкий географ , который установил климатические и растительные зоны Земли («География растений», 1836 г.). В России представления о географической зональности высказаны в 1899 г. в книге «Учение о зонах природы. Горизонтальные и вертикальные почвенные зоны». Профессору принадлежат исследования о причинах и факторах зональности. Он пришел к выводу о большой роли соотношения радиационного баланса и количества годовых осадков (1966 г.).

В настоящее время считается, что природная зональность представлена

  1. компонентной зональностью;
  2. ландшафтной зональностью.

Все компоненты географической оболочки подчинены Мировому закону зональности. Зональность отмечается для климатических показателей, растительных группировок и типов почв. Она проявляется также в гидрологических и геохимических явлениях, как производная от климатических и почвенно-растительных условий.

В основе зональности физико-географических явлений находится закономерность поступления солнечной радиации, приход которой убывает от экватора к полюсам. Однако на такое распределение солнечной радиации накладывается фактор прозрачности атмосферы, который является азональным , так как он не связан с формой Земли. От солнечной радиации зависит температура воздуха, на распределения которой влияет еще один азональный фактор – свойства земной поверхности – ее теплоемкость и теплопроводность. Этот фактор приводит к еще большему нарушению зональности. На распределение тепла на поверхности Земли большое влияние оказывают также океанические и воздушные течения, образующие системы переноса тепла.

Еще более сложно распределяются на нашей планете атмосферные осадки. Они имеют, с одной стороны, зональный характер, а с другой – связаны с положением территории в западной или восточной части континентов и высотой земной поверхности.

Совместное воздействие тепла и влаги является основным фактором, который определяет большинство физико-географических явлений. Поскольку в распределении влаги и тепла сохраняется ориентация по широте, то и все явления, связанные с климатом, ориентированы поширотно. В результате на Земле образуется поширотная структура, называемая географической поясностью .

Поясность проявляется в распределении основных климатических характеристик: солнечной радиации, температуры и атмосферного давления, что приводит к образованию системы из 13 климатических поясов . Растительные группировки на Земле также образуют вытянутые полосы, но более сложной конфигурации, чем климатические пояса. Их называют зонами растительности . Почвенный покров тесно связан с растительностью, климатом и характером рельефа, что позволило В.В. Докучаеву выделить генетические типы почв.

В 50-х годах XX столетия географы Григорьев и Будыко развили закон зональности Докучаева и сформулировали периодический закон географической зональности . Этим законом устанавливается повторение однотипных географических зон внутри поясов – в зависимости от соотношения тепла и влаги. Так, лесные зоны имеются в экваториальном, субэкваториальном, тропическим и умеренном поясах. Степи и пустыни также встречаются в разных географических поясах. Наличие однотипных зон в разных поясах объясняется повторением одинаковых соотношений тепла и влаги.

Таким образом, зона – это крупная часть географического пояса, которая характеризуется одинаковыми показателями радиационного баланса, годовой суммы осадков и испаряемости. В начале прошлого века Высоцкий предложил коэффициент увлажнения, равный отношению количества осадков к испаряемости. Позднее Будыко для обоснования периодического закона ввел показатель – радиационный индекс сухости, представляющий собой отношение поступающего количества солнечной энергии к затратам тепла на испарение атмосферных осадков. Как установлено, имеется тесная связь географических зон с величиной поступления солнечного тепла и радиационным индексом сухости.

Географические пояса внутренне неоднородны, что, прежде всего, связано с азональной циркуляцией атмосферы и переносом влаги. С учетом этого выделяются секторы. Как правило, их три: два океанических (западный и восточный) и один континентальный. Секторность это географическая зональность, которая выражается в смене основных природных показателей по долготе, то есть от океанов вглубь материков.

Ландшафтная зональность определяется тем, что географическая оболочка в процессе своего развития приобрела «мозаичное» строение и состоит из множества природных комплексов неодинаковой величины и сложности. По определению Ф.Н. Милькова ПТК – это саморегулируемая система взаимосвязанных компонентов, функционирующая под воздействием одного или нескольких компонентов, выступающих в роли ведущего фактора.