» » Физические и химические свойства бензола. Реакции присоединения Озонирование бензола

Физические и химические свойства бензола. Реакции присоединения Озонирование бензола

УДК 541.13: 669.871.4

Д.С. Гуров, А.В. Даровских, А.Г. Миков, В.И. Скудаев

Пермский национальный исследовательский политехнический университет

ИК-СПЕКТР ПРОДУКТОВ ОЗОНИРОВАНИЯ БЕНЗОЛА

Методом ИК-спектроскопии исследован процесс озонирования бензола. Обнаружено появление новых полос поглощения, отнесенных к колебаниям по связям С-Н и С=0 в продуктах озонирования. Наблюдалось образование нерастворимых озонидов бензола. Высказаны предположения о возможных направлениях процесса.

Ароматические углеводороды, одним из которых является бензол, служат сырьем для производства различных материалов, пластических масс, красителей, медикаментов, средств защиты растений, в производстве взрывчатых веществ, фармацевтических препаратов и др. В то же время бензол и его производные присутствуют как вредные компоненты в отходах предприятий, производящих эти материалы. Реакция бензола с озоном представляет интерес как в целях получения продуктов его озонирования, так и с целью обезвреживания отходов.

Известно, что озон устойчив к действию таких окислителей, как HMnO4, H2O2, OsO4 и др. . При взаимодействии с озоном образуются озониды, которые в присутствии воды на цинковом катализаторе распадаются до глиоксаля . Процесс окисления углеводородов в жидкой фазе протекает по цепному механизму с образованием на начальной стадии гидроперекисей . Опубликована работа по исследованию влияния озонирования на изменение компонентного состава каменноугольного сырого бензола с содержанием бензола около 30 % , из которой, однако, не ясно, что при этом происходит с самим бензолом.

Озонирование бензола проводили в реакторе барботажного типа. В стеклянный реактор диаметром 20 мм заливали 30 мл бензола, озон получали в озонаторе, через который пропускали кислород. Объемная скорость подачи озонокислородной смеси составляла 100 мл/мин при концентрации озона 1,5 % (0,61 моль/м). Процесс проводили при температуре 25 °С, пробы продуктов отбирали с помощью шприца и растворяли в тетрахлориде углерода в соотношении 5 мл пробы на 100 мл раствори-

теля. Раствор пробы помещали в кювету для жидкости с окнами КБг с постоянной толщиной слоя жидкости 0,171 мм и снимали ИК-спектр.

По окончании процесса на поверхности раствора и на стенках реактора обнаружен осадок светло-желтого цвета, который является, по-видимому, смесью озонидов бензола.

На рисунке приведены спектры бензола до начала озонирования и проб продуктов озонирования.

Волновое число, см-1

Рис. ИК-спектры раствора бензола и продуктов его озонирования в тетрахлориде углерода. Время озонирования, ч: 1 - 0; 2 - 2

Тетрахлорид углерода в области более 1550 см-1 не поглощает ИК-излучение. Бензол поглощает в области от 3000 до 3050 см-1. В процессе озонирования в спектрах продуктов появляется полоса с волновым числом 2900 см-1, относительная интенсивность этой полосы по сравнению с полосой бензола 3000 см-1 со временем увеличивается: через 0,5 ч - 0,05, через 1 ч - 0,09, через 1,5 ч - 0,12, через 2 ч -

0,15, через 2,5 ч - 0,16. Согласно литературным данным , эта полоса может быть отнесена к колебаниям по связи С-Н либо по связи О-Н в продуктах окисления бензола в группе, не связанной с кольцом. Вто-

рая новая полоса с заметно возрастающей интенсивностью и с волновым числом 1700 см-1 может быть отнесена к колебаниям по двойной связи С=0 в карбонильной или карбоксильной группе. Поэтому в продуктах озонирования бензола можно ожидать наличия смеси карбоновых кислот, ангидридов, альдегидов и кетонов.

В качестве основной схемы процесса взаимодействия бензола с озоном при 25 °С, как и с кислородом при 400 °С на катализаторе У205, возможно образование смеси малеиновой кислоты и ее ангидрида:

Проведенное исследование показало, что бензольное кольцо, устойчивое к действию многих окислителей, разрушается озоном при обычных температурах.

Список литературы

1. Березин Д.Б., Березин Б.Д., Курс современной органической химии. - М.: Высшая школа, 2001. - 768 с.

2. Разумовский С.Д., Заиков Г.Е. Озон и его реакции с органическими соединениями. - М.: Наука, 1974. - 322 с.

3. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления углеводородов в жидкой фазе. - М.: Наука, 1965. - 280 с.

4. Семенова С.А., Патраков Ю.Ф. Влияние озонирования на изменение компонентного состава каменноугольного сырого бензола // Журн. прикл. химии. - 2007. - Т. 80, вып. 5. - С. 871-875.

5. Иоффе Б.В., Костиков Р.Р., Разин В.В. Физические методы определения строения органических соединений: учеб. пособие для хим. вузов / под ред. Б.В. Иоффе. - М.: Высшая школа, 1984. - 336 с.

Озонирование бензола

Существуют разработки метода синтеза глиоксаля озонированием бензола эквивалентным количеством озона с дальнейшим гидрированием получаемых продуктов для получения глиоксаля. Бензол присоединяет озон, образуя триозонид -- чрезвычайно взрывчатое вещество. Под действием воды озонид разлагается с образованием трех молекул глиоксаля по схеме Однако из-за высокой себестоимости получения озона и чрезвычайной взрывоопасности этот метод не представляет практической ценности.

Окисление глицерина хромовой кислотой

Еще одним возможным методом получения глиоксаля является окисление глицерина хромовой кислотой в присутствии серной кислоты при комнатной температуре. Наряду с глиоксалем образуется формальдегид в соответствии с уравнением реакции:

2Сr2О72-+ЗНОСН2СН(ОН)СН2ОН+16Н4-4Сr3+3(СНО)2+ЗН2СО+14H2 (1.6)

Скорость реакции окисления возрастает с увеличением концентрации ионов водорода. Предполагается, что активной окисляющей формой в реакции (1.6) является шестивалентный хром однозарядного иона HcrO3-. При исследовании реакции окисления глицерина были обнаружены свободные радикал-ионы, показывающие, что реакция окисления глицерина шестивалентным хромом может проходить по механизму как одно-, так и трехэлектронного переноса.

Предположено, что окисление глицерина шестивалентным хромом может идти по следующему механизму:


Механизм предусматривает образование нестабильного бинарного комплекса (1.8), который разлагается со скоростью, определяющей стадию трехэлектронного переноса с получением формальдегида, свободного радикал-иона глиоксаля и трехвалентного иона хрома. Образовавшийся радикал-ион может претерпевать дальнейшее окисление шестивалентным хромом, давая глиоксаль и пятивалентный хром (1.10), либо рекомбинирует, давая двухзарядный ион (1.10), который окисляется пятизарядным ионом хрома, давая две молекулы глиоксаля и трехвалентный ион хрома (1.11). Структура бинарного комплекса не установлена.

Недостатком данного метода получения глиоксаля является периодичность процесса, необходимость очистки образующейся смеси от серной кислоты, соединений хрома и образующегося в ходе процесса формальдегида.

Среди разнообразных реакций, в которые вступают ароматические соединения с участием бензольного кольца, в первую очередь обращают на себя внимание рассмотренные выше реакции замещения. Это происходит, потому что они протекают вопреки ожиданиям. При той степени ненасыщенности, которая присуща, например, бензолу, этому углеводороду более характерными должны были быть реакции присоединения. При определенных условиях так и происходит, бензол и другие арены присоединяют водородные атомы, галогены, озон и другие способные присоединяться реагенты.

11.5.5. Гидрирование. В присутствии катализаторов гидрирования (платина, палладий, никель) бензол и его гомологи присоединяют водород и превращаются в соответствующие циклогексаны. Так, бензол гидрируется над никелевым катализатором при 100-200 0 C и 105 атм.:

Гидрирование аренов по сравнению с алкенами имеет две особенности. Во-первых, арены значительно уступают алкенам в реакционной способности . Для сравнения с условиями гидрирования бензола укажем, что циклогексен гидрируется в циклогексан уже при 25 0 C и давлении в 1,4 атм. Во-вторых, бензол или не присоединяет, или присоединяет сразу три молекулы водорода . Получить гидрированием бензола продукты частичного гидрирования, такие как циклогексен или циклогексадиен, не удается.

Эти особенности при гидрировании, частном случае реакций присоединения к бензольному кольцу, обусловлены строением бензола. При превращении в циклогексан бензол перестает быть ароматической системой. Циклогексан содержит на 150,73 кДж энергии больше (энергия резонанса) и менее устойчив, чем бензол. Понятно, что перейти в это термодинамически менее устойчивое состояние бензол не склонен. Этим и объясняется меньшая реакционная способность бензола по отношению к водороду по сравнению с алкенами. Присоединение к ароматической системе возможно лишь с участием р -электронов единого электронного облака бензольного кольца. С началом процесса присоединения система перестает быть ароматической и получается богатая энергией и обладающая высокой реакционной способностью частица, которая гораздо охотнее вступает в реакцию присоединения, чем исходный арен.

11.5.6. Галогенирование. Результат взаимодействия галогена с бензолом зависит от экспериментальных условий. Каталитическое галогенирование ведет к образованию продуктов замещения. Оказалось, что ультрафиолет инициирует присоединение атомов галогена к бензольному ядру аренов. Сам бензол на свету присоединяет 6 атомов хлора и превращается в гесахлорциклогексан, представляющий смесь 9 пространственных изомеров

Один из этих изомеров, в котором 3 хлора занимают аксиальные связи, а еще 3 – экваториальные связи (γ-изомер, гексахлоран), оказался эффективным инсектицидом, средством борьбы с вредными насекомыми. Гексахлоран оказался слишком устойчивым в условиях биосферы и способным накапливаться в жировой ткани теплокровных и поэтому в настоящее время не применяется.

По своей реакционной способности по отношению к галогенам в реакциях присоединения бензол значительно уступает алкенам. Например, хлор и бром в четыреххлористом углероде даже в темноте при комнатной температуре присоединяются к циклогексену. В указанных условиях бензол не реагирует. Происходит это только при ультрафиолетовом освещении.

11.5.7. Озонирование. Озонирование - еще один пример, показывающий, что бензол как ненасыщенное соединение может вступить в реакцию присоединения. Озонирование бензола и изучение продуктов гидролиза триозонида было осуществлено еще в 1904 году (Гарриес )

Интересные результаты были получены при озонировании о -ксилола (1941 г., Вибо ). Дело в том, что состав продуктов озонирования зависит от положения двойных связей в бензольном кольце. Структура 1 с двойными связями между углеродами бензольного кольца, несущими метильные заместители, при озонировании и гидролизе озонида даст 2 молекулы метилглиоксаля и молекулу глиоксаля

Альтернативная структура II для о -ксилола должна была бы образовать 2 молекулы глиоксаля и молекулу диацетила

ОПРЕДЕЛЕНИЕ

Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

Формула – С 6 Н 6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

Рис. 1. Структурные и пространственная формулы бензола.

Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C 6 H 5 – — фенил (Ph-).

Химические свойства бензола

Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

— галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl 3 , FeCl 3 , AlBr 3)

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl;

— нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

— алкилирование алкенами

C 6 H 6 + CH 2 = CH-CH 3 → C 6 H 5 -CH(CH 3) 2 ;

Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

— гидрирование (реакция протекает при нагревании, катализатор – Pt)

— присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C 6 H 6 Cl 6)

Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

2C 6 H 6 +15O 2 → 12CO 2 + 6H 2 O.

Физические свойства бензола

Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1С, плавления – 5,5С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

Получение и применение бензола

Основные способы получения бензола:

— дегидроциклизация гексана (катализаторы – Pt, Cr 3 O 2)

CH 3 –(CH 2) 4 -CH 3 → С 6 Н 6 + 4H 2 ;

— дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

С 6 Н 12 → С 6 Н 6 + 4H 2 ;

— тримеризация ацетилена (реакция протекает при нагревании до 600С, катализатор – активированный уголь)

3HC≡CH → C 6 H 6 .

Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

Примеры решения задач

ПРИМЕР 1

Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH 4 → C 2 H 2 → C 6 H 6 → C 6 H 5 Cl.
Решение Для получения ацетилена из метана используют следующую реакцию:

2CH 4 → C 2 H 2 + 3Н 2 (t = 1400C).

Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t = 600C) и в присутствии активированного угля:

3C 2 H 2 → C 6 H 6 .

Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.

ПРИМЕР 2

Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr.

Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

n(C 6 H 6) = m(C 6 H 6) / M(C 6 H 6);

n(C 6 H 6) = 39 / 78 = 0,5 моль.

По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C 6 H 6): n(C 6 H 5 Br) : n(HBr) = 1:1:1, следовательно n(C 6 H 6) = n(C 6 H 5 Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

m(C 6 H 5 Br) = n(C 6 H 5 Br)×M(C 6 H 5 Br);

m(HBr) = n(HBr)×M(HBr).

Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

m(C 6 H 5 Br) = 0,5×157 = 78,5 г;

m(HBr) = 0,5×81 = 40,5 г.

Ответ Продуктами реакции являются бромбензол и бромоводород. Массы бромбензола и бромоводорода – 78,5 и 40,5 г, соответственно.
Молекула органического соединения и молекула простого или сложного вещества соединяются в новую молекулу: Такие реакции обозначаются А - addition [присоединение]. Например, бромирование пропена: К реакциям присоединения относятся также реакции полимеризации: Например, образование полиэтилена:...
(ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Реакции присоединения
    Реакции присоединения по двойной связи в общем виде можно представить следующим образом: По этой схеме к двойным углерод-углеродным связям могут присоединяться: водород (Н2), галогены (Cl2, Br2, С1Вг, СП), вода (Н20), галогеноводороды (НС1, HBr, HI), серная кислота (H2S04), кислород (02) и г.д. Большая...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Реакция озонирования Гарриеса
    Озон 03 легко присоединяется по месту двойной связи с образованием циклических перекисей - озопидов : Озониды очень неустойчивы, легко взрываются. Обычно их не выделяют, а сразу после получения разлагают водой: Перекись водорода окисляет образующиеся альдегиды до карбоновых кислот: Озонирование...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Строение бензола
    Сопоставляя все имеющиеся в настоящее время сведения, относящиеся к бензолу и его гомологам, строение бензола можно представить следующим образом. Все атомы углерода в бензоле находятся в состоянии sp2- гибридизации. Каждый из них образует три обычные с-связи (две связи С-С и одну С-Н с углом...
    (ОРГАНИЧЕСКАЯ ХИМИЯ)
  • Парциальное газофазное окисление метан-углеводородных смесей и гомологов метана
    Реальные природные газы, в том числе используемые в химических процессах, содержат примеси различных углеводородов, в основном гомологов метана. Поскольку из-за большого различия в прочности химических связей даже ближайшие гомологи метана сильно отличаются от него по реакционной способности и ряду других...
  • Кинетический анализ парциального окисления метана и его гомологов в синтез-газ
    В последнее время наряду с каталитическими методами окислительной конверсии метана в синтез-газ в ряде промышленных процессов, особенно в небольших компактных установках по получению водорода, стало применяться его газофазное парциальное окисление. Однако часто применяемые термодинамические методы расчета...
    (ОРГАНИЧЕСКАЯ ХИМИЯ: ОКИСЛИТЕЛЬНЫЕ ПРЕВРАЩЕНИЯ МЕТАНА)
  •