» » Ароматические соединения. Ароматичность, критерии ароматичности.Правило Хюккеля Критерии ароматичности органических соединений

Ароматические соединения. Ароматичность, критерии ароматичности.Правило Хюккеля Критерии ароматичности органических соединений
значениями длин одинарных и двойных связей. В молекуле бензола все длины связей равны (1.395 ангстрем), тогда как в сопряженных ациклических полиенах они чередуются. В бутадиене, например, длина связи C 1 -C 2 составляет 1,34 Å, а длина связи C 2 -C 3 - 1,48 Å . Как правило, длины связей имеют тенденцию к чередованию в неароматических соединениях, а не в ароматических структурах. Типичные значения длин наиболее важных связей ациклических соединений приведены в табл. Эти значения могут быть сопоставлены с величинами длин связей в некоторых гетероароматических системах, как показано на рис. 1.

Таблица. Типичные длины одинарных и двойных связей (Å) между sp 2 -гибридизованными атомами

C-C 1.48 C=C 1.34
C-N 1.45 C=N 1.27
C-O 1.36 C=O 1.22
C-S 1.75 C=S 1.64
N-N 1.41 N=N 1.23

Длины связей в четырех шестичленных гетероциклах, показанных на рис. 1, будут промежуточными между значениями для одинарных и двойных связей. Длины связей С-С в трех шестичленных моноциклах различаются незначительно и близки к значениям для бензола. На этом основании мы можем сделать вывод, что в этих соединениях существует значительная циклическая делокализация π-электронов. Для пятичленных гетероциклов мы видим существенное чередование связей. Поскольку в молекулах содержатся различные гетероатомы, было бы неправомерно сравнивать длины связей, но можно сказать, что в кислородсодержащих гетероциклах в большей степени выражена локализация связей. Однако и в этих соединениях длины связей отличаются от длин связей «чистых» одинарных и двойных связей. Во всех этих пятичленных гетероциклических системах существует циклическая делокализация, но она меньше, чем для шестичленных гетероциклов. В двух представленных пятичленных бициклических системах (индоле и индолизи-не) степень локализации связей гораздо выше, чем, например, в пирроле, и эта закономерность наблюдается и в случае других конденсированных систем по сравнению с их моноциклическими аналогами.

Порядок связи можно иногда оценить с помощью вицинальных констант спин-спинового взаимодействия (КССВ) в спектрах ПМР. Например, КССВ Jab и Jbc на соседних атомах углерода a, b и с, удаленных от гетероатома, должны быть равны, если связи Сaа-Сb и Сb-Сc равны по длине. Значение отношения Jab:Jbc должно находиться в интервале от 0,5 до 1,0 в зависимости от степени чередования связей. Сравнивая эти величины в серии подобных соединений, можно определить значения степени локализации связей. Например, изменения в отношении Jab:Jbc для четырех соединений представленные на рис. 2, позволяют оценить степень фиксации связей в изоиндоле, для которого невозможно получить данные с помощью рентгеноструктурного анализа.

Эффекты кольцевых токов и химические сдвиги в спектрах ПМР

Химические сдвиги сигналов протонов в бензолах больше чем в аналогичных ациклических полиенах. В частности, это приписывают влиянию «диамагнитного кольцевого тока». Когда раствор бензоидного соединения помещают в магнитное поле, молекулы выстраиваются под правильными углами к полю, и возникает диамагнитный кольцевой ток из-за наличия делокализованных π-электронов. Это создает вторичное магнитное поле, которое противоположно приложенному полю внутри цикла, но усиливает его вне цикла (рис. 3). Таким образом, ядра водорода, лежащие в области выше или ниже центра кольца, экранированы, а лежащие на периферии - дезэкранированы. Изменения труднее наблюдать в спектрах 13 С-ЯМР, так как химические сдвиги 13 С гораздо больше, и дополнительное экранирование и дезэкранирова-ние, вызванное кольцевым током, относительно менее заметно.

Существование диамагнитного кольцевого тока, проявляющееся в экранирующем и дезэкранирующем влиянии на химические сдвиги протонов, было предложено считать диагностическим тестом на ароматический характер соединения. Это оправдано тем, что установлена теоретическая связь между диамагнитной восприимчивостью и энергией резонанса. Но этот критерий следует использовать с осторожностью, так как эффекты кольцевого тока возрастают с увеличением размера цикла и, следовательно, довольно значительны в больших аннуленах и гетероаннуленах. С практической точки зрения, для того чтобы обнаружить экранирование и дезэкранирование, необходимо иметь для сравнения подходящие неароматические эталонные соединения, а такие соединения нелегко найти для некоторых гетероциклических систем. На химические сдвиги оказывают влияние некоторые другие факторы, помимо диамагнитного кольцевого тока, как, например, нарушение распределения π-электронов гетероатомом и влияние природы растворителей. Величины химических сдвигов для многих гетероциклов сильно зависят от природы растворителя. Однако мы можем видеть качественное влияние кольцевых токов, сравнивая спектры ПМР пиридина, фурана и тиофена и их дигидроаналогов (рис. 4).

Сравнения с неароматическими системами такого типа подвергаются критике, поскольку действительно трудно подобрать подходящие модельные соединения для некоторых простых гетероциклов, таких, как, например, пиррол. Используются непрямые методы оценки влияния диамагнитного кольцевого тока: например, величины химических сдвигов метильных групп гетероциклов, приведенные на рис. 5, сравнивали со значениями, рассчитанными для линейных моделей. Наблюдаемые сдвиги в слабое поле были приняты критерием оценки относительной ароматичности гетероциклов. Однако в основном «эффект кольцевого тока» следует рассматривать скорее как качественный индикатор ароматичности, чем количественный.

Другие физические методы изучения электронного строения

Существует несколько экспериментальных методов изучения электронных энергетических уровней или распределения электронной плотности. Они не могут считаться критериями ароматичности, но обеспечивают независимые экспериментальные оценки состоятельности расчетов энергий молекулярных орбиталей гетероциклов.

Ультрафиолетовые спектры поглощения в течение многих лет используют как качественный метод для определения подобия характера связей в различных соединениях. Области, которые определяются π→π*-переходами, подобны таковым для карбоциклических аналогов, хотя спектры многих гетероциклов содержат дополнительные энергетические переходы, которые можно приписать n→π*-поглощению.

Энергетические уровни заполненных молекулярных орбиталей могут быть рассчитаны с помощью фотоэлектронной спектроскопии. Электроны выбрасываются с занятых молекулярных орбиталей при облучении молекул ультрафиолетовым светом высокой энергии в газовой фазе. Энергии этих электронов непосредственно связаны с потенциалами ионизации, обусловленными удалением электронов с различных молекулярных орбиталей. Анализ спектров включает определение спектральных областей электронных состояний молекулярных ионов и, следовательно, идентификацию орбиталей, с которых произошло испускание электронов. Таким образом, метод служит экспериментальным тестом для предсказанных изменений в уровнях связей серии гетероциклических соединений. Например, были получены аналоги пиридина, в которых атом азота был заменен другими элементами V группы (Р, As, Sb, Bi). Изучение фотоэлектронных спектров показало, что π-связывание в этих соединениях подобно π-связыванию в молекулах бензола и пиридина. π-Связывающие орбитали напоминают те, которые показаны на рис. 6. Энергии ионизации, связанные с уровнем π 2 (рис. 6), уменьшаются с увеличением размера гетероатома, так как он становится более электроположительным. Фотоэлектронный спектр силабензола также соответствует ожидаемому для бензольного аналога.

Дополнительный метод, дающий возможность измерить сродство к электрону и оценить энергетические уровни незанятых орбиталей, известен как спектроскопия электронного пропускания. Электрон из электронного пучка временно захватывается незанятой орбиталью молекулы, и образуется анион с очень коротким временем жизни (10 -12 -10 -15 с). Величины, характеризующие сродство к электрону, получают, анализируя изменение в спектре электронного рассеяния. Этим методом было определено сродство к электрону некоторых ароматических гетероциклов. С помощью этих методов были подтверждены данные, рассчитанные исходя из энергий π-орбиталей ароматических гетероциклов (представлены на рис. 6 и 7).

Термохимическая оценка ароматичности: Эмпирические энергии резонанса

Для оценки стабилизации ароматических соединений обычно используют два термохимических метода: измерение стандартной энтальпии сгорания и стандартной энтальпии гидрирования. Теплота сгорания пиридина, например, представляет собой изменение энтальпии в соответствии с уравнением

C 5 H 5 N (г.) + 25/4 O 2 → 5CO 2 (г.) + 5/2 H 2 O (ж.) + 1/2 N 2 (г.)

и значение может быть определено экспериментально с помощью калориметрии. Метод также может быть применен для определения экспериментального значения теплоты образования соединения. Атомная теплота образования пиридина представляет собой изменение энтальпии в соответствии с уравнением

C 5 H 5 N (г.) → 5С (г.) + 5Н (г.) + N (г.)

Величина может быть получена из теплоты сгорания, если использовать известные величины теплот сгорания и атомизации углерода, водорода и азота.

Теплота образования может быть рассчитана сложением индивидуальных значений энергий связей для молекулы: для пиридина это должны быть значения, соответствующие локализованной структуре (структуре Кекуле). Разница между экспериментальной (численно меньшей) и рассчитанной величинами и будет мерой стабилизации делокализованной системы; она называется эмпирической энергией резонанса. Полученные значения зависят от величин энергий связей, используемых в расчете, а также от выбора модельной системы «локализованной связи».

Теплоты гидрирования ароматических соединений можно использовать для расчета эмпирических энергий резонанса путем сравнения с экспериментальными значениями для подходящих модельных соединений. Например, сравним теплоту гидрирования бензола [ΔН = -49,7 ккал/моль (-208 кДж/моль)] с таковой для 3 молей циклогексена [ΔН = -28,4 ккал/моль (-119 кДж/моль), [ΔН = -85,3 ккал/моль (-357 кДж/моль)]. Разница 35,6 ккал/моль (149 кДж/моль) соответствует эмпирической энергии резонанса бензола. Немного иное значение получают, если модельную систему выбирают другим способом. Так, значения теплот гидрирования первой и второй двойных связей 1,3-циклогексадиена экстраполируют и получают величину теплоты гидрирования при добавлении третьего моля водорода к гипотетическому «циклогексатриену». Сумму трех значений затем принимают за величину для локализованной модели, как показано ниже (рассчитано экстраполяцией):

C 6 H 10 + H 2 → C 6 H 12 ΔН = -28,4 ккал/моль (-119 кДж/моль)
1,3-C 6 H 8 + H 2 → C 6 H 10 ΔH = -26,5 ккал/моль (-111 кДж/моль)
C 6 H 6 + H 2 → C 6 H 8 ΔН = -24,6 ккал/моль (-103 кДж/моль)

Суммарная теплота гидрирования этой локализованной модели составляет - 79,5 ккал/моль (- 333 кДж/моль), и, таким образом, эмпирическая энергия резонанса бензола равна 29,8 ккал/моль (125 кДж/моль).

Однако совершенно ясно, что не стоит придавать слишком большого значения абсолютный величинам энергий резонанса. Величины, полученные подобными методами для серии соединений, могут давать только приемлемую относительную оценку степени стабилизации. Большинство значений для гетероциклических соединений основано на величинах теплот сгорания, так как многие модельные системы, необходимые для измерения теплот гидрирования, трудно доступны. Литературные данные различаются в очень широком диапазоне, главным образом из-за выбранных значений энергий связей. Некоторые сравнимые значения (полученные подобными методами) представлены в табл.

Таблица. Эмпирические энергии резонанса

Молекулярные орбитали и энергия делокализации

Рассмотрим гетероциклы, полностью ненасыщенные и плоские или почти плоские, с замкнутым циклом атомов с взаимодействующими р-орбиталями. В приближении Хюккеля электроны на π-молекулярных орбиталях рассматриваются отдельно от электронов, расположенных на α-орбиталях. Энергии π-молекулярных орбиталей могут быть выражены с помощью двух констант. Первая, кулоновский интеграл, обозначаемый символом α, отражает приближенное значение силы притяжения электрона отдельного атома. В углеродной π-электронной системе α представляет собой энергию электрона на изолированной р-орбитали до перекрывания. Вторая константа, резонансный интеграл, означает меру стабилизации, достигаемую при взаимодействии соседних р-орбиталей. Эту величину обозначают символом β.

Величины энергий шести π-орбиталей бензола, рассчитанные по методу Хюккеля, приведены на рис. 8, а. Две π-орбитали этилена представлены для сравнения на рис. 8, б. Шесть π-электронов, занимающих три связывающие орбитали бензола, имеют суммарную энергию (6α + 8β), тогда как шесть π-электронов на трех изолированных связывающих орбиталях этилена будут иметь общую энергию (6α + 6β). Таким образом, π-электронная система бензола более стабильна на величину 2β, которую называют энергией делокализации бензола. Очевидно, что энергия делокализации будет такой же и для пиридина, и для других шестичленных гетероциклов, если игнорировать эффект, возникающий при замене атома углерода на атом азота. На практике такие эффекты могут быть компенсированы использованием параметров, вносящих поправку на неравномерное распределение π-электронной плотности.

Эта энергия делокализации не соответствует эмпирической энергии резонанса, так как последняя рассчитывается для модели с чередующимися длинами связей, а первая основывается на гипотетической модели локализации с геометрией, идентичной геометрии де-локализованной системы. Для того чтобы установить соотношение между ними, мы должны к эмпирической энергии резонанса добавить энергию, необходимую для сжатия структуры с чередующимися простыми и кратными связями до структуры с нечередующимися связями. Эта энергия деформации, рассчитанная для бензола, составляет 27 ккал/моль (113 кДж/моль), т. е. весьма существенную величину по сравнению с эмпирической энергией резонанса. Следовательно, полезнее признать, что энергии делокализации представляют собой относительные величины, чем определять их численные значения.

Рассчитанные энергии резонанса

Проблема измерения ароматической стабилизации на основании модели простой несопряженной π-электронной системы состоит в том, что «энергия делокализации» не является уникальным свойством циклических систем. Например, на основе простого метода МО Хюккеля можно показать, что энергия делокализации бутадиена составляет 0,472β; другие ациклические сопряженные системы также имеют некоторую энергию делокализации. Пытаясь найти меру ароматичности, необходимо оценивать дополнительный вклад в общую энергию делокализации вследствие того, что соединение имеет циклическую структуру. В связи с этим было высказано предположение, что при расчете энергии резонанса следует использовать энергии связей неароматических систем, а не несопряженных систем в качестве эталонных структур. Было показано, что энергия π-связи линейных полиенов прямо пропорциональна длине цепи. Каждая дополнительная «простая» или «двойная» связь С-С в полиене вносит в общую π-энергию такой же вклад, как и в случае бутадиена или гексатриена. Это, конечно, не означает, что отсутствует сопряжение, но показывает, что сопряжение также влияет на энергию связи в нециклических системах. Следовательно, можно рассчитать «эталонные» энергии π-связей для любой циклической или ациклической π-системы, складывая величины, соответствующие определенным типам связей. Этот аддитивный принцип применим к π-связям с гетероатомами в такой же степени, как и к связям углерод-углерод.

Циклические системы, в которых наблюдается дополнительная энергия π-связи по сравнению с рассчитанными эталонными величинами, называют «ароматическими». Дополнительная энергия стабилизации была названа «резонансной энергией Дьюара», но принцип расчета энергий резонанса был принят позднее. Циклические системы, энергии резонанса которых близки к нулю [не более 2,5 ккакл/ моль (10 кДж/моль)], относят к «неароматическим». Несколько циклических систем, для которых рассчитанная энергия резонанса имеет отрицательную величину (они обладают меньшей энергией связи, чем эталонная структура), называют «антиароматическими».

Энергии резонанса, основанные на модели Дьюара, можно рассчитать методом МО Хюккеля, несмотря на то, что метод игнорирует σ- и π-взаимодействия. Это обусловлено тем, что σ- и π-вклады в энергию связи прямо пропорциональны порядку данной связи. Следовательно, π-резонансные энергии прямо пропорциональны общим энергиям резонанса. Что касается связей с гетероатомом, то величины кулоновского и резонансного интегралов необходимо модифицировать. При этом должны быть получены величины, наилучшим образом совпадающие с экспериментальными значениями теплот атомизации известных соединений, которые затем используют для расчета энергий различных типов π-связей в единицах измерения резонансного интеграла β. Общую энергию π-связи эталонной структуры (т. е. структуры с преобладающей валентностью) рассчитывают сложением вкладов индивидуальных связей, которые затем сравнивают с общей энергией т-связи, вычисленной по методу МО Хюккеля.

Для того чтобы провести сравнение ароматичности других гетероциклов, удобно рассчитывать энергию резонанса на один π-электрон (РЭЭ) путем деления энергии резонанса на число π-электронов в молекуле. Для известных систем эти значения хорошо коррелируют с другими критериями ароматичности; некоторые данные для важнейших гетерциклов приведены в табл. Метод можно также использовать для предсказания степени ароматичности еще не синтезированных гетероциклических соединений. В табл. также приведены некоторые рассчитанные значения энергий ароматизации, которые представляют собой разницу энергий аналогов с локализованными и делокализованными структурами.

Таблица. Резонансные энергии в расчете на одни π-электрон (РЭЭ) и энергии ароматизации "некоторых гетероциклических соединений"

АРОМАТИЧНОСТЬ (от греч. aroma, род. падеж aromatos - благовоние), понятие, характеризующее совокупность структурных, энергетич. св-в и особенностей реакц. способности циклич. структур с системой сопряженных связей. Термин введен Ф. А. Кекуле (1865) для описания св-в соединений, структурно близких к бензолу - родоначальнику класса ароматических соединении .

К числу наиб. важных признаков ароматичности принадлежит склонность ароматич. соед. к замещению, сохраняющему систему сопряженных связей в цикле, а не к присоединению, разрушающему эту систему. Кроме бензола и его производных, такие р-ции характерны для полицикли ч. ароматич. углеводородов (напр., нафталина , антрацена , фенантрена и их производных), а также для изоэлектронных им сопряженных гетероциклич. соединений. Известно, однако, немало соед. (азулен , фульвен и др.), к-рые также легко вступают в р-ции замещения, но не обладают всеми др. признаками ароматичности.

Реакц. способность не может служить точной характеристикой ароматичности еще и потому, что она отражает св-ва не только осн. состояния данного соединения, но и переходного состояния (активиров. комплекса) р-ции, в к-рую это соед. вступает. Поэтому более строгие критерии ароматичности связаны с анализом физ. св-в осн. электронных состояний циклич. сопряженных структур. Главная трудность состоит в том, что ароматичность не является экспериментально определяемой характеристикой. Поэтому не существует однозначного критерия для установления степени ароматичности, т.е. степени подобия св-вам бензола . Ниже рассмотрены наиб. важные признаки ароматичности.

Строение электронной оболочки ароматических систем.

Тенденция бензола и его производных к сохранению структуры сопряженного кольца в разл. превращениях означает повыш. термодинамич. и кинетич. устойчивость этого структурного фрагмента. Стабилизация (понижение электронной энергии) молекулы или иона , обладающих циклич. структурой, достигается при полном заполнении электронами всех связывающих молекулярныхорбиталей и вакантности несвязывающих и антисвязывающих орбиталей . Выполнение этих условий достигается, когда общее числоэлектронов в циклич. полиене равно (4л + 2), где п = = 0,1,2... (правило Хюккеля).

Это правило объясняет устойчивость бензола (ф-ла I) и циклопентадиенильного аниона (II; п = 1). Оно позволило правильно предсказать устойчивость циклопропенильного (III; п = 0) и циклогептатриенильного (IV; п = 1) катионов . Ввиду подобияэлектронных оболочек соед. II-IV и бензола они, как и высшие циклич. полиены - , , аннулены (V-VII), рассматриваются как ароматич. системы.

Правило Хюккеля можно экстраполировать на ряд сопряженных гетероциклич. соед. - производные пиридина (VIII) и катиона пирилия (IX), изоэлектронные бензолу , пятичленные гетероциклы типа X (пиррол , фуран , тиофен), изоэлектронные циклопентадиенильному аниону . Эти соединения также относят к ароматич. системам.

Для производных соединений II-Х и др. более сложных структур, получаемых изоэлектронным замещением метиновых групп в полиенах I-VII, также характерны высокая термодинамич. устойчивость и общая склонность к р-циям замещения в ядре.

Циклич. сопряженные полиены , имеющие в цикле 4nэлектронов (n=1,2...), неустойчивы и легко вступают в р-ции присоединения, т. к. обладают незамкнутой электронной оболочкой с частично заполненными несвязывающими орбиталями . Такие соединения, наиб. типичным примером к-рых служит циклобутадиен (XI), относят кантиароматич. системам.

Правила, учитывающие числоэлектронов в цикле, полезны для характеристики св-в моноциклич. структур, однако неприложимы к полициклам. При оценке ароматичности последних необходимо учитывать, как соответствуют этим правилам электронные оболочки каждого отдельного цикла молекулы . С осторожностью следует пользоваться ими и в случае многозаряженных циклич. ионов . Так, электронные оболочки дикатиона и дианиона циклобутадиена отвечают требованиям правила Хюккеля. Однако эти структуры нельзя относить к ароматическим, т. к. дикатион (п = 0) устойчив не в плоской форме, обеспечивающей циклич. сопряжение, а в согнутой по диагонали; дианион (n=1) вообще неустойчив.

Энергетические критерии ароматичности. Энергия резонанса. Для определения количеств. меры ароматичности, характеризующей повыш. термодинамич. устойчивость ароматич. соед., было сформулировано понятие энергии резонанса (ЭР), или энергии делокализации.

Теплота гидрирования молекулы бензола , формально содержащей три двойные связи , на 151 кДж/моль больше, чем теплота гидрирования трех молекул этилена . Эту величину, связываемую с ЭР, можно рассматривать как энергию, дополнительно затрачиваемую на разрушение циклич. системы сопряженных двойных связей бензольного кольца, стабилизирующей эту структуру. Т. обр., ЭР характеризует вклад циклич. сопряжения в теплоту образования (полную энергию, теплоту атомизации) соединения.

Предложен ряд способов теоретич. оценок ЭР. Они различаются гл. обр. выбором структуры сравнения (т.е. структуры, в к-рой нарушено циклич. сопряжение) с циклич. формой. Обычный подход к вычислению ЭР состоит в сопоставленииэлектронных энергийциклич. структуры и суммы энергий всех изолированных кратных связей , содержащихся в ней. Однако рассчитываемые т. обр. ЭР, независимо от используемого квантовохим. метода, имеют тенденцию к возрастанию с увеличением размеровсистемы. Это нередко противоречит эксперим. данным о св-вах ароматич. системы. Так, ароматичность в ряду полиаценовбензол (I), нафталин (XII), антрацен (XIII), тетрацен (XIV) понижается (напр., возрастает склонность к присоединению, увеличивается альтернирование длин связей), а ЭР (приведены в единицах= 75 кДж/моль) растут:

Этого недостатка лишены величины ЭР, рассчитываемые путем сравненияэлектронных энергий циклич. структуры и аналогичного ациклич. сопряженного полнена (М. Дьюар, 1969). Рассчитанные т. обр. величины принято называть ЭР Дьюара (ЭРД). Напр., ЭРД бензола (1,013) вычисляется при сопоставлении его с 1,3,5-гексатриена, а ЭРД циклобутадиена-сопоставлением его= = с 1,3-бутадиена.

Соединения с положит. значениями ЭРД относят к ароматическим, с отрицательными-к антиароматическим, а со значениями ЭРД, близкими к нулю, - к неароматическим. Хотя значения ЭРД варьируют в зависимости от приближений квантовохим. метода расчета, относит. порядок их практически не зависит от выбора метода. Ниже приведены ЭРД в расчете на одинэлектрон (ЭРД/е; в единицах), вычисленные по модифициров. методу молекулярных орбиталей Хюккеля:

Наиб. ЭРД/е, то есть наиб. ароматичностью, обладает бензол . Понижение ЭРД/е отражает понижение ароматич. св-в. Приведенные данные хорошо согласуются со сложившимися представлениями о проявлениях ароматичности.

Магнитные критерии ароматичности. Циклич. сопряжениеэлектронов приводит к возникновению в молекуле кольцевого тока, к-рый вызывает экзальтацию диамагн. восприимчивости. Поскольку величины кольцевого тока и экзальтации отражают эффективность циклич. сопряжения, они м. б. использованы как количеств. мера ароматичности.

К ароматическим относятся соед., в молекулах к-рых поддерживаются наведенные диамагнитныеэлектронные кольцевые токи (диатропные системы). В случае аннуленов (n = 0,1,2...) существует прямая пропорциональность между силой кольцевого тока и величиной ЭРД. Однако для неальтернантных углеводородов (напр., азулена) и гетероциклич. соед. эта зависимость усложняется. В ряде случаев система м.б. одновременно и диатропной и антиароматической, напр. бициклодекапентаен.

Наличие индуциров. кольцевого тока в циклич. сопряженных системах характерно проявляется в спектрах протонного магн. резонанса (ПМР), т.к. ток создает анизотропное магн. поле, заметно влияющее на хим. сдвиги протонов , связанных с атомами кольца. Сигналы протонов , расположенных во внутр. части ароматич. кольца, смещаются в сторону сильного поля, а сигналы протонов , расположенных на периферии кольца, - в сторону слабого поля. Так, внутр. протоны аннулена (ф-ла VI) и аннулена (VII) проявляются при - 60°С в спектре ПМР соотв. при 0,0 и -2,99м. д., а внешние-при 7,6 и 9,28 м. д.

Для антиароматич. систем аннуленов, наоборот, характерны парамагн. кольцевые токи, приводящие к сдвигу внеш. протонов в сильное поле (паратропные системы). Так, хим. сдвиг внеш. протонов аннулена равен всего 4,8 м.д.

Структурные критерии ароматичности. Важнейшие структурные характеристики молекулы бензола - ее планарность и полная выравненность связей. Молекулу можно рассматривать как ароматическую, если длины углерод-углеродных связей в ней лежат в пределах 0,136-0,143 нм, т.е. близко к 0,1397 нм для молекулы бензола (I). Для нециклич. сопряженных полиеновых структур длины связей С-С составляют 0,144-0,148 нм, а связей С=С-0,134-0,135 нм. Еще большее альтернирование длин связей характерно для антиароматич. структур. Это подтверждается данными строгих неэмпирич. расчетов геометрич. параметров циклобутадиена и эксперим. данными для его производных.

Предложены разл. выражения для количеств. характеристики ароматичности по степени альтернирования длин связей, напр. для углеводородов вводится индекс ароматичности (НОМА d):

где а = 98,89, Х r - длина r-ной связи (в А), n-число связей. Для бензола HOMA d максимален и равен 1, для циклобутадиена минимален (0,863).

В органической химии хорошо известно и широко используется такое понятие, как ароматичность некоторых органических соединений. Термин «ароматичность» связан прежде всего с бензолом, его гомологами и многочисленными производными. Этот термин относится исключительно к структуре молекул этих веществ, их свойствам, но не имеет никакого отношения к их запаху. Правда, первые ароматические соединения имели, вероятно, приятный запах (некоторые натуральные эфиры, душистые смолы, например ладан и др.).

Ароматичность - общий признак некоторых циклических органических соединений, обладающих совокупностью особых свойств.

Наличие единой замкнутой системы π-электронов в молекуле - основной признак ароматичности.

Ароматические соединения подчиняются правилу Э. Хюккеля (1931):

Плоские моноциклические соединения, имеющие сопряженную систему π-электронов, могут быть ароматическими, если число этих электронов равно 4 n +2 (где n = 0,1,2,3, 4 и т.д., т.е. число π-электронов в молекуле может быть 2, 6, 10, 14, 18 и т.д.).

Эти особенности обусловливают все важнейшие физические и химические свойства ароматических соединений. Например, они вступают преимущественно в реакции замещения (в основном электрофильного), а не присоединения (несмотря на формальную ненасыщенность). Ароматические соединения обладают высокой устойчивостью, например к окислителям. Их молекулы имеют плоское строение. Если же это требование не выполняется, то в молекуле нарушается параллельность осей 2р-орбиталей, что приводит к устранению сопряжения и, как следствие, к нарушению выравненности π-электронной плотности в системе.

Номенклатура

Систематическое название всех ароматических углеводородов - арены , а бензола - бензен . Гомологи бензола рассматривают как замещенные бензола и цифрами указывают положение заместителей. Однако систематическая номенклатура допускает название «бензол», а для некоторых гомологов бензола - тривиальные названия: винилбензол (I) называют стиролом , метилбензол (II) - толуолом, диметилбензол (III) - ксилолом, изопропилбензол (IV) - кумолом, метоксибензол (V) - анизолом и т.д.:

Ароматические радикалы имеют общее название - арилы (Аr). Радикал С 6 Н 5 - называют фенилом (от старого названия бензола - «фен»).

Изомерия.

Общая формула гомологов бензола С n Н 2 n -6 . Все шесть атомов водорода в молекуле бензола одинаковы и при замещении одного из них на один и тот же радикал образуется одно и то же соединение. Поэтому однозамещенный бензол изомеров не имеет. Например, существует только один метилбензол:

При замещении двух атомов водорода на метальные группы образуются три изомера - ксилолы , которые отличаются друг от друга расположением заместителей в кольце:


орто -диметилбензол, мета -диметилбензол, пара -диметилбензол,

или 1,2-диметилбензол или 1,3-диметилбензол или 1,4-диметилбензол

(о -ксилол) (м -ксилол) (п -ксилол)

Вместо буквенного обозначения (орто-, мета-, пара -, или сокращенно: о-,м-, п-) можно пользоваться цифровым: 1,2-, 1,3-, 1,4-. Изомеры могут отличаться характером заместителей:


пропилбензол изопропилбензол

Ароматичностьособое свойство некоторых химических соединений, благодаря которому сопряженноекольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можнобыло бы ожидать только при одном сопряжении.Ароматичность не имеет непосредственного отношения к запаху органических соединений, и являетсяпонятием, характеризующим совокупность структурных и энергетических свойств некоторых циклическихмолекул, содержащих систему сопряженных двойных связей. Термин «ароматичность» был предложенпотому, что первые представители этого класса веществ обладали приятным запахом. Наиболее распространены ароматические соединения, содержащие в цикле шесть углеродных атомов; родоначальником этого ряда является бензол C 6 H 6 . Рентгеноструктурный анализ показывает, что молекула бензола плоская, а длина С-С связей составляет 0,139 нм. Из этого следует, что все шесть атомов углерода в бензоле находятся в sp 2 -гибридном состоянии, каждый атом углерода образует σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащими в одной плоскости, валентные углы составляют 120º. Таким образом, σ-скелет молекулы бензола представляет собой правильный шестиугольник. При этом каждый атом углерода имеет негибридную p -орбиталь, расположенную перпендикулярно плоскому скелету молекулы; все шесть негибридных p -электронов взаимодействуют между собой, образуя π-связи, не локализованные в пары, а объединенные в единое π-электронное облако. Таким образом, в молекуле бензола осуществляется круговое сопряжение. Графически строение бензола можно передать следующей формулой:

Круговое сопряжение дает выигрыш в энергии в 154 кДж/моль – эта величина составляет энергию сопряжения – количество энергии, которое нужно затратить, чтобы разрушить ароматическую систему бензола.

Для образования устойчивой ароматической системы необходимо, чтобы p -электроны формально группировались в 3, 5, 7 и т. д. двойных связей; математически это выражается правилом Хюккеля : повышенной термодинамической стабильностью обладают циклические соединения, имеющие плоское строение и содержащие в замкнутой системе сопряжения (4n + 2) электронов, где n – натуральный ряд чисел.

31 . Реакции электрофильного замещения в бензоле (галогенирование, нитрование, сульфирование, алкилирование, ацилирование). Представление о механизме реакций электрофильного замещения в ароматическом ряду, σ- и π-комплексы.



Галогенирование

Для введения галогена в ароматическое кольцо в качестве реагентов используют комплексы галогенов с кислотами Льюиса. Роль последних заключается в поляризации связи галоген-галоген, в результате чего один из атомов приобретает положительный заряд, тогда как другой образует связь с кислотой Льюиса за счет ее вакантной d -орбитали.

Нитрование

Бензол и его гомологи превращаются в нитросоединения действием нитрующей смеси, которая состоит из концентрированных серной и азотной кислот (2:1). Нитрующей частицей (электрофилом) является катион нитрония NO 2 + , существование которого в нитрующей смеси доказано криоскопическим методом: измерения температур замерзания азотной и серной кислот и их смеси указывает на присутствие четырех частиц в растворе.

Сульфирование

Реакция сульфирования аренов, как считают, протекает в олеуме при действии триоксида серы, а в серной кислоте - с участием катиона HSO 3 + . Триоксид серы проявляет электрофильный характер благодаря полярности связей S–O.

Алкилирование по Фриделю-Крафтсу

Одним из способов получения гомологов бензола является реакция алкилирования. Превращение носит имя Ш. Фриделя и Дж. М. Крафтса, которые его открыли. В реакцию, как правило, вводят галогеналканы и галогениды алюминия в качестве катализаторов. Считают, что катализатор – кислота Льюиса – поляризует связь С-галоген, создавая на атоме углерода дефицит электронной плотности, т.е. механизм аналогичен реакции галогенирования

Ацилирование по Фриделю-Крафтсу

Сходной с реакцией алкилирования является реакция ацилирования ароматических соединений. В качестве реагентов применяют ангидриды или галогенангидриды карбоновых кислот, продуктами являются ароматические кетоны. Механизм этой реакции включает образование комплексного соединения между ацилирующим реагентом и кислотой Льюиса. В результате положительный заряд на атоме углерода несравненно возрастает, что делает его способным к атаке ароматического соединения.



Нужно отметить, что, в отличие от реакции алкилирования, в данном случае необходимо брать избыток катализатора по отношению к количеству реагентов, т.к. продукт реакции (кетон) сам способен к комплексообразованию и связывает кислоту Льюиса.

Реакции электрофильного замещения σ- и π-комплексы характерны для ароматических карбоциклических и гетероциклических систем. В результате делокализации p-электронов в молекуле бензола (и других ароматических систем) p-электронная плотность распределена равномерно по обе стороны цикла. Подобное экранирование p-электронами атомов углерода цикла защищает их от атаки нуклеофильными реагентами и, наоборот, облегчает возможность атаки электрофильными реагентами. Но в отличие от реакций алкенов с электрофильными реагентами, взаимодействие ароматических соединений с ними не приводит к образованию продуктов присоединения, так как в этом случае нарушалась бы ароматичность соединения и уменьшалась его устойчивость. Сохранение ароматичности возможно в случае, если электрофильная частица заместит катион водорода.Механизм реакций электрофильного замещения похож на механизм реакций электрофильного присоединения, так как имеются общие закономерности протекания реакций.

Общая схема механизма реакций электрофильного замещения S Е:

Образование пи-комплекса идет за счет пи-связи в соединении, а сигма-комплекса - за счет сигма-связи.

Образование π-комплекса. Образовавшийся электрофил Х+(например, ион Br+) атакует богатое электронной плотностью бензольное ядро, образуя π-комплекс.

Превращение π-комплекса в σ-комплекс. Электрофил отбирает 2 электрона у π-системы, образуя σ−связь с одним из атомов углерода бензольного кольца. Разница между пи- и сигма-связью: Сигма связь более крепкая, сигма связь образуется гибридными орбиталями Пи связь, которая образована негибридизованными пи-орбиталями.Пи-связь более удалены от центров, соединяемых атомов, поэтому она менее крепкая и её легче разорвать.

32. Ароматические углеводороды. Влияние заместителей в бензольном кольце на изомерный состав продуктов и скорость реакции. Активирующие и дезактивирующие заместители. Орто-, пара- и мета -ориентанты. Реакции радикального замещения и окисления в боковой цепи.

Существенной особенностью реакций получения и превращений про­изводных ароматических углеводородов является то, что новые заместите­ли вступают в бензольное кольцо в определенные положения по отноше­нию к уже имеющимся заместителям. Закономерности, определяющие направление реакций замещения в бензольном ядре, называются прави­лами ориентации.

Реакционная способность того или иного атома углерода в бензольном кольце определяется следующими факторами: 1) положением и природой уже имеющихся заместителей, 2) природой действующего агента, 3) усло­виями проведения реакции. Решающее влияние имеют два первых фактора.

Заместители в бензольном кольце можно разделить на две группы.

Электронодонорные (первого рода) - это группировки атомов, способные отдавать электроны. К ним относятся ОН, OR, RCOO, SH, SR, NH 2 , NHR, NR 2 , NHCOR, -N=N-, CH 3 , CH 2 R, CR 3 , F, CI, Br, I.

Электроноакцепторные заместители (второго рода) - это атом­ные группировки, способные оттягивать, принимать электроны от бензо­льного ядра. К ним относятся S0 3 H, N0 2 , CHO, COR, COOH, COOR, CN, СС1 3 , и т. д.

Действующие на ароматические соединения полярные реагенты можно разделить на две группы: электрофильные и нуклеофильные. Наиболее характерны для ароматических соединений процессы алкилирования, галогенирования, сульфирования и нитрования. Эти процессы идут при взаимодействии ароматических соединений с электрофильными реагента­ми. Известны и реакции с нуклеофильными реагентами (NaOH, NH 2 Na и т. д.), например реакции гидроксилирования, аминирования.

Заместители первого рода облегчают реакции с электрофильными реагентами, причем они ориентируют новый заместитель в орто- и пара -положения.

Заместители второго рода затрудняют реакции с электрофильными ре­агентами: они ориентируют новый заместитель в мета-положение. В то же время эти заместители облегчают реакции с нуклеофильными реагентами.

Рассмотрим примеры реакций с различными ориентирующим действи­ем заместителей.

1. Заместитель первого рода; реагент электрофильный. Облегчающее реакцию действие заместителя, о-, п-ориентация:

2. Заместитель второго рода; реагент электрофильный. Затрудняющее реакцию действие заместителя; м-ориентация:

3. Заместитель первого рода; реагент нуклеофильный; м-ориентация. Затрудняющее действие заместителя. Примеры таких реакций с бесспор­ным механизмом неизвестны.

4. Заместитель второго рода; реагент нуклеофильный, о-, п-ориентация:

Правила ориентации при электрофильном замещении в бензольном кольце основаны на взаимном влиянии атомов в молекуле. Если в незамещенном бензоле С 6 Н 6 электронная плотность в кольце распределена равномерно, то в замещенном бензоле С 6 Н 5 Х под влиянием заместителя Х происходит перераспределение электронов и возникают области повышенной и пониженной электронной плотности. Это оказывает влияние на легкость и направление реакций электрофильного замещения. Место вступления нового заместителя определяется природой уже имеющегося заместителя.

Правила ориентации

Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.

По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода .

Ориентанты 1-го рода (орто-пара орто - и пара -положения. К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

R (+I ); -OH (+M,-I ); -OR (+M,-I ); -NH 2 (+M,-I ); -NR 2 (+M,-I )+M-эффект в этих группах сильнее, чем -I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара -положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов. Пример:

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства: -F (+M<–I ), -Cl (+M<–I ), -Br (+M<–I ).Являясь орто-пара -ориентантами, они замедляют электрофильное замещение. Причина - сильный –I -эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета -ориентанты) направляют последующее замещение преимущественно в мета -положение. К ним относятся электроноакцепторные группы:

NO 2 (–M, –I ); -COOH (–M, –I ); -CH=O (–M, –I ); -SO 3 H (–I ); -NH 3 + (–I ); -CCl 3 (–I ).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара -положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета -положении, где электронная плотность несколько выше. Пример:

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C 6 H 5 CH 3 > бензол C 6 H 6 > нитробензол C 6 H 5 NO 2 .

Реакции радикального замещения и окисления в боковой цепи

Вторая по важности группа реакций алкилароматических углеводородов - свободнорадикальное замещение атома водорода боковой цепи в a -положении по отношению к ароматическому ядру.

Преимущественное замещение в a -положении объясняется высокой устойчивостью соответствующих алкилароматических радикалов, а следовательно, сравнительно небольшой прочностью a -С-Н-связи. Например, энергия разрыва связи С-Н в боковой цепи молекулы толуола составляет 327 кДж/моль - на 100 кДж/моль меньше, чем энергия связи С-Н в молекуле метана (427 кДж/моль). Это означает, что энергия стабилизации свободного радикала бензила С 6 Н 5 -СН 2 · равна 100 кДж/моль.

Причиной высокой устойчивости бензильного и других алкилароматических радикалов с неспаренным электроном у a -углеродного атома является возможность распределения спиновой плотности неспаренного электрона на несвязывающей молекулярной орбитали, охватывающей атомы углерода 1", 2, 4 и 6.

В результате распределения (делокализации) спиновая плотность неспаренного электрона только на 4/7 остается у некольцевого атома углерода, остальные 3/7 спиновой плотности распределены между одним пара - и двумя орто - углеродными атомами ароматического ядра.

Реакции окисления

Реакции окисления в зависимости от условий и природы окислителя могут протекать по разным направлениям.

Молекулярный кислород при температуре около 100 о С окисляет изопропилбензол по радикально-цепному механизму до сравнительно устойчивого гидропероксида.

33. Конденсированные ароматические углеводороды: нафталин, антрацен, фенантрен, бензпирен. Их структурные фрагменты в природных и биологически активных веществах (стероидов, алкалоидов, антибиотиков).

Нафтали́н - С 10 Н 8 твердое кристаллическое вещество с характерным запахом. В воде не растворяется, но хорошо растворим в бензоле, эфире, спирте, хлороформе. Нафталин по химическим свойствам сходен с бензолом: легко нитруется, сульфируется, взаимодействует с галогенами. Отличается от бензола тем, что ещё легче вступает в реакции. Нафталин получают из каменноугольной смолы.

Антраце́н - бесцветные кристаллы, t пл 218° C. Нерастворим в воде, растворим в ацетонитриле и ацетоне, при нагревании растворим в бензоле. Антрацен получают из каменноугольной смолы. По химическим свойствам сходен с нафталином (легко нитруется, сульфируется и т. д.), но отличается от него тем, что легче вступает в реакции присоединения и окисления.

Антрацен может фотодимеризоваться под действием УФ излучения. Это приводит к существенному изменению свойств вещества.

В димере имеются две ковалентные связи, образованные в результате циклоприсоединения. Димер распадается обратно на две молекулы антрацена при нагревании или при УФ облучении с длиной волны ниже 300 нм.Фенантрен - трициклический ароматический углеводород. Фенантрен представляет собой блестящие бесцветные кристаллы. Не растворяется в воде, растворяется в органических растворителях (диэтиловом эфире, бензоле, хлороформе, метаноле, уксусной кислоте). Растворы фенантрена светятся голубым цветом.

По химическим свойствам напоминает нафталинБензпире́н, или бензапире́н - ароматическое соединение, представитель семейства полициклических углеводородов, вещество первого класса опасности.

Образуется при сгорании углеводородного жидкого, твёрдого и газообразного топлива (в меньшей степени при сгорании газообразного).

В окружающей среде накапливается преимущественно в почве, меньше в воде. Из почвы поступает в ткани растений и продолжает своё движение дальше в пищевой цепи, при этом на каждой её ступени содержание БП в природных объектах возрастает (см. Биомагнификация).

Обладает сильной люминесценцией в видимой части спектра (в концентрированной серной кислоте - А 521 нм (470 нм); F 548 нм (493 нм)), что позволяет обнаруживать его в концентрациях до 0,01 миллиардных долей люминесцентными методами.

34. Галогенпроизводные углеводородов. Классификация, номенклатура, изомерия .

Классифицировать галогенопроизводные можно несколькими способами:

1. в соответствии с общей классификацией углеводородов (т.е. алифатические, алициклические, ароматические, предельные или непредельные галогенопроизводные)

2. по количеству и качеству атомов галогенов

3. по типу атома углерода, к которому присоединён атом галогена: первичные, вторичные, третичные галогенопроизводные.

По номенклатуре ИЮПАК положение и название галогена указывается в приставке. Нумерация начинается с того конца молекулы, к которому ближе расположен атом галогена. Если присутствует двойная или тройная связь, то именно она определяет начало нумерации, а не атом галогена: До сих пор широко используется т.н. “рациональная номенклатура” для составления названий галогенопроизводных. В этом случае название строится следующим образом: углеводородный радикал + галогенид.

Некоторые галогенопроизводные имеют тривиальные названия, например ингаляционный анестетик 1,1,1-трифтор-2-бром-2-хлорэтан (CF 3 -CBrClH) имеет тривиальное название фторотан. 3. Изомерия

3.1. Cтруктурная изомерия 3.1.1. Изомерия положения заместителей

1-бромбутан 2-бромбутан

3.1.2. Изомерия углеродного скелета

1-хлорбутан 2-метил-1-хлорпропан

3.2. Пространственная изомерия

Стереоизомерия может проявляться при наличии четырёх разных заместителей у одного атома углерода (энантиомерия) или при наличии разных заместителей при двойной связи, например:

транс-1,2-дихлорэтен цис-1,2-дихлорэтен

35. Реакции нуклеофильного замещения атома галогена, их использование в синтезе органических соединений различных классов (спиртов, простых и сложных эфиров, аминов, тиолов и сульфидов, нитроалканов, нитрилов). - позволяет получать представители практически всех классов органических соединений (спирты, эфиры, амины, нитрилы и др.), поэтому эти реакции широко применяются в синтезе лекарственных веществ. Основные механизмы реакций

Замещение галогена у sp 3 -гибридного атома углерода может осуществляться как по S N 1, так и по S N 2 механизмам. Замещение галогена у sp 2 -гибридного атома углерода (в арил- и винилгалогенидах) идет либо по типу присоединения-отщепления, либо по типу отщепления-присоединения и значительно труднее, чем у sp 3 -гибридного. - S N 1 механизм включает две стадии: а) диссоциация алкилгалогенида на ионы; б) взаимодействие катиона с нуклеофиломНуклеофильная атака контактной ионной пары, в которой асимметрия в значительной мере сохраняется, приводит к обращению конфигурации. В сольватно-разделенной ионной паре одна сторона катиона экранируется сольватированным галогенид-ионом и атака нуклеофила более вероятна с другой стороны, что приводит к преимущественному обращению конфигурации, но селективность снижается, и рацемизация увеличивается. Полная рацемизация возможна лишь при образовании свободного катиона (с). Однако, полная рацемизация для оптически активных галогенидов при механизме S N 1 обычно не наблюдается. Рацемизация составляет от 5 до 20%, следовательно, сольватированный катион практически не образуется.

Стадия образования карбокатиона является лимитирующей, а, следовательно, стабильность катиона определяет быстроту прохождения процесса. Скорость процесса зависит также от концентрации алкилгалогенида и не зависит от концентрации нуклеофила.

Образование карбокатиона может являться причиной ряда побочных процессов: изомеризация углеродной цепи, элиминирование (EI) и др

Нуклеофил Nu - атакует субстрат со стороны, противоположной уходящей группе. При этом реакция идет в одну стадию с образованиемпереходного состояния, в которомsp 3 -гибридизация центрального атома углерода изменяется наsp 2 - с р-орбиталью, перпендикулярной плоскости расположения гибридных орбиталей. Одна доля этойр-орбитали перекрывается с нуклеофилом, а вторая – с уходящей группой.Связь С-Nu образуется одновременно с разрывом связи С-Y.

Скорость превращения исходных веществ в продукты реакции зависит: 1)от величины положительного заряда на атоме углерода субстрата, 2)пространственных факторов, 3)силы нуклеофила и 4)в кинетической области от концентрации как нуклеофила, так и алкилгалогенида. При большом избытке нуклеофила реакция может протекать попервому или дробному порядку. (Термины S N 1 и S N 2 указывают лишь на молекулярность, но не на порядок реакции.)

Реакция всегда сопровождается обращением конфигурации.Побочной может быть реакция элиминирования Е2.

Механизм S N Ar (присоединение - отщепление) -обычно реализуетсяпри наличие электроноакцепторных заместителей, которые создаютd+ (направляют нуклеофил) и стабилизируютs-комплекс. В гетероциклах их роль выполняет гетероатом. В отличие от механизмаS N 2 для алкилгалогенидов нуклеофил образует новую связь раньше, чем рвется старая.

Пиридин и хинолин можно рассматривать как аналоги нитробензола. Как и в нитробензоле, большое значение имеет положение галогена в кольце. 3-Галогенпиридины похожи на галогенбензолы, 2-,4-замещенные аналогичны нитрогалогенбензолам, при этом 4-галогенпиридин активнее 2-замещенного. Реакционная способность алкилгалогенидов в реакциях нуклеофильного замещения в протонных растворителях уменьшается (уменьшается способность групп уходить) в следующем ряду: RI > RBr > RCl > RF.

В случае активированных галогенаренов появление положительного заряда у реакционного центра зависит не только от количества, расположения и природы других заместителей в ядре, но и от природы замещаемого галогена. Поэтому атомы галогена могут быть замещены с возрастающей легкостью в ряду I < Br < Cl < F .Катализ замещения галоген в аренах медью – один из важных технологических приемов, позволяющий ускорить реакцию замещения неактивированного галогена в аренах, снизить температуру реакции (~ на 100 о С), увеличить селективность процесса и выход продукта. Предполагают, что реакция идет через стадию образования медь-органических комплексов

Ароматические субстраты (арилгалогениды) должны быть активированными, иначе выход целевого продукта (эфира) может оказаться низким за счет побочных процессов. .Замена галогена в первичных и вторичных алкилгалогенидах на амино группу осуществляется нагреванием их со спиртовым, водным или водно-спиртовым раствором аммиака, первичного или вторичного амина под давлением (в автоклаве). При этом образуется смесь солей первичных, вторичных, третичных аминов и четвертичных солей аммония

АРОМАТИЧНОСТЬ – сочетание определенных свойств, присущих большой группе соединений, называемых, соответственно, ароматическими.

Термин «ароматичность» ввел в 1865 Ф.Кекуле, установивший строение бензола и предложивший для него формулу:

Название «ароматический» связано с тем, что среди производных бензола существуют соединения с приятным запахом (например, нитробензол имеет запах миндаля).

Кекуле обратил внимание на то, что двойные связи в бензоле и в его производных заметно отличаются по свойствам от двойных связей в большинстве ненасыщенных соединений. Для бензола оказались крайне затруднены реакции присоединения (например, галогенов) по двойным связям, которые в случае ненасыщенных соединений проходят достаточно легко.

Кроме того, обнаружилось, что орто -дихлорбензол (атомы хлора находятся у двух соседних атомов углерода) не имеет изомеров, которые можно было ожидать на основе предложенной для него структурной формулы, где два атома хлора расположены либо у простой, либо у двойной связи:

В результате Кекуле предложил назвать связи в бензоле осциллирующими, то есть колеблющимися. Со временем это предположение получило дальнейшее развитие, и было усовершенствовано.

Наиболее характерны для бензола реакции замещения атомов водорода. Изучение химии бензола показало, что замена атома водорода на какую-либо группу определенным и, главное, предсказуемым образом влияет на реакционную способность остальных атомов водорода.

Если в бензольное ядро ввести группу, оттягивающую электроны от ядра (например, метильную), то последующее галогенирование приводит к замещению в орто- и пара- положении. При введении электроноподающей группы (например, карбоксильной) галоген направляется в мета -положение:

Долгое время ароматичностью считали набор указанных химических свойств, но постепенно были найдены более точные признаки, основанные на особенностях строения ароматических соединений.

Электронное строение бензола и родственных ему соединений в современном понимании выглядит следующим образом. В образовании двойных связей участвуют р -электроны атомов углерода, орбитали (область наиболее вероятного расположения электрона в пространстве) этих электронов имеют форму объемных восьмерок. В случае бензола орбитали взаимоперекрываются, образуя кольцевые орбитали, на которых располагаются все р -электроны молекулы:

В результате появляется единая замкнутая электронная оболочка, система приобретает высокую стабильность. Фиксированные простые и двойные связи в бензоле отсутствуют, все связи С–С усреднены и эквивалентны, поэтому чаще для обозначения ароматичности используют кольцевой символ, помещенный внутри цикла:

В образовавшихся циклических орбиталях возникает кольцевой ток, который может быть обнаружен специальными измерениями, дополнительно указывающими на ароматичность соединения.

Ароматичностью обладают плоские циклические молекулы, при этом количество электронов (m ), объединенных в единую циклическую систему, должно соответствовать правилу Хюккеля:

m = 4n + 2 (n = 0, 1, 2, 3.), n – число натурального ряда

Ниже показаны первые три представителя этого ряда ароматических молекул, соответствующие правилу Хюккеля: катион циклопропена , бензол и нафталин.

Расширение понятия «ароматичность» позволило применить этот термин к соединениям небензольного типа, но обладающим в то же время набором структурных и химических признаков, характерных для производных бензола.

В некоторых соединениях, где в состав цикла входят атомы O, S или N, например, в фуране, тиофене, пирроле так же, как в бензоле, существует устойчивая – в соответствии с правилом Хюккеля – шестиэлектронная замкнутая система. Четыре р- электрона (отмечены на рисунке синим цветом) предоставляют двойные связи цикла, а два s- электрона (отмечены красным цветом) дают атомы кислорода, серы или азота, имеющие неподеленную пару электронов.

Ароматическими могут быть не только плоские циклические молекулы, но и объемные структуры, например, сандвичевые молекулы (ферроцен, дибензолхром) и некоторые каркасные бороводороды:

В случае объемных структур вместо правила Хюккеля применяют иные правила, определяющие то количество электронов, при котором возникает ароматичность. Однако, во всех этих случаях присутствуют основные признаки ароматичности: замкнутая электронная оболочка, высокая стабильность молекулы, склонность к реакциям замещения и влияние введенного заместителя на реакционную способность остальных реакционных центров в молекуле.

www.krugosvet.ru

Справочник химика 21

Химия и химическая технология

Сформулируйте правило ароматичности Э. Хюккеля. Приведите примеры ароматических систем, отвечающих правилу Хюккеля, если 1) п=0, 2) п = 1,

Ароматичность гетероциклов, правило Хюккеля. Основность и кислотность гетероциклов. Реакционная способность пиррола, пиридина, индола. Таутомерия а-окси- и а-аминопиридина, урацила, тимина, цитозина, аденина, гуанина. Водородные связи при ассоциациях гетероциклов, их окси- и аминопроизводных. Водородные связи в системах аденин - тимин, гуанин - цитозин. Понятие о ДНК и РНК, их биологическая роль.

Однако к ароматичности ведет не только секстетная конфигурация л-электронов. Согласно правилу 4п + 2 Хюккеля относительно устойчивыми плоскими моноциклическими системами атомов с тригональной гибридизацией являются только системы, содержащие 4л -f 2 электронов. Это правило следует из простой теории МОХ, в которой для л-электронной циклической системы низшая связывающая орбиталь всегда заполняется двумя электронами, а все более высокие связывающие орбитали дважды вырождены и заполнены четырьмя электронами. Если число таких орбиталей п, то л-электрон-ная оболочка заполняется 4л + 2 электронами. Следовательно, ароматическими будут плоские моноциклические соединения, содержащие 2, 6, 10, 14 и т. д. л-электронов. Правило Хюккеля хорошо подтверждается на опыте.

Хюккеля правило - один из признаков, определяющих ароматичность плоская циклическая структура является ароматической, если она содержит (4п + 2)п-электронов, участвующих в формировании единой делокализованной л-электронной системы. См. Бензол.

ХЮККЕЛЯ ПРАВИЛО (правило ароматичности) циклические соед., молекулы к-рых состоят из атомов, вносящих н я-злектронную систему цикла 4и + 2 р-электропов (= 0,1,2.), обладают аром, св-вами. X. н. строго выполняется только для моноциклич. соед. Сформулировано

Хюккель впервые применил метод молекулярных орбиталей и сформулировал правило ароматичности относительно стабильны моноциклические плоские 5р -гибридизованные соединения с числом делокализованных я-электронов 4п + 2 (где п = О, 1, 2 И Т. д.).

Структура и уст0йч1 Е0сть бензольного кольца. Ароматичность и правило Хюккеля. Изомерия и номенклатура производных бензола,

Охарактеризуйте особенности строения соединений, проявляющих ароматичность. Сформулируйте правило Хюккеля. Какие из приведенных ниже соединений являются ароматическими

Правило Хюккеля применимо для углеводородов с конденсированными (сочлененными) кольцами. Определите, какие соединения являются ароматическими объясните, почему антрацен и фенантрен менее ароматичны, чем бензол например, легко окисляются СгОз до хинонов.

Все это связано с особенностью структур этих гетероциклических соединений. У них в пятичленных кольцах четыре л-электрона двух сопряженных двойных связей и неподеленная электронная пара гетероатома (О, 8, К) образуют секстет л-электронов, что укладывается в рамки правила ароматичности Хюккеля (4п-ь2) л-электронов в замкнутой системе сопряженных кратных связей (где п — целое неотрицательное число). Таким образом, эти шесть л-электронов кольца образуют делокализованную систему, как в бензоле

Правило Хюккеля допускает существование ароматических систем, содержащих не только секстет электронов. Если в выражении 4и + 2 положить и = О, то окажется, что циклическая система, имеющая лишь два электрона, должна обладать свойствами ароматичности. Это - система циклопропенилия, ее синтезировал в 1957 г. Бреслау при взаимодействии толана с нитрилом диазофенилуксусной кислоты

Следует подчеркнуть достоинство действия рассматриваемых правил, т. е. фактически обобщенной концепции ароматичности для циклических систем типа Хюккеля и Мебиуса. В отличие от метода корреляционных диаграмм, требующего наличия элементов симметрии для переходного состояния реакции, данный подход свободен от указанного ограничения.

Эрих Хюккель (род. 1896 г.) - немецкий физик, большинство работ которого связано с решением химических проблем. Совместно с П. Дебаем и Л. Онзагером им разработана теория сильных электролитов (теория Дебая - Хюккеля). Ему принадлежит одна из наиболее плодотворных идей в теории строения сопряженных систем - идея а, я-приближения. Э. Хюккель сформулировал правило ароматичности Ап+2, предложил метод расчета я-электронных систем, носящий его имя.

Мы говорили выше об эффективности простьк качественных концепций (типа стерических препятствий, индутсгивного эффекта, эффектов сольватации/десольватации и т.п.), повседневно применяемых в органической химии. Наиболее распространенные из них появились на свет как обобщения обширного эмпирического материала, накапливавшегося на протяжении десятилетий трудами поколений химиков всего мира. Квантовая. х]4мия способна на теоретической, неэ.мпирической основе порождать концепции такого же уровня простоты и удобства в применении. Выразительными примерами могут служить концепция ароматичности Хюккеля (правило 4л +2) и правила Вудворда-Хоффмана (сохранение орбитальной симметрии). Мы беремся утверждать, что вклад этих результатов в развитие органической химии несравненно более значителен, чем вклад всех достижений расчетных методов, вместе взятых. Их сила именно в простоте и общедоступности применения, в том, что они позволяют с единой точки зрения не только интерпретировать огромный фактический материал, но и уверенно предсказывать новые явления. Прийти к подобным концепциям на чисто эмпирической основе, а тем

Аннулены - моноциклические углеводороды, содержащие сопряженные двойные связи и отвечающие общей формуле (СН), где т > 2. Если цикл плоский, а т- нечетное число - 1, 3, 5 и т.д., тогда число л-электронов в единой сопряженной системе равно 4п + 2 (см. Ароматичность, Хюккеля правило) и молекула характеризуется ароматическими свойствами.

Правило ароматичности Хюккеля (правило 4ш + 2). Ароматическими свойствами обладают все аннулены или их ионы с общим числом л-электронов, равным 4т + 2, где т = О, 1, 2, 3,. ..

Особенности электронного строения ароматических соединений известны давно и нашли отражение в известном правиле ароматичности Хюккеля (1931-1933 гг.), которое в настоящее время формулируется следующим образом молекулы, включающие в основном состоянии набор орбиталей с участием Ап- -2п(р)-электронов, образующих замкнутый цикл, являются ароматическими. Позднее сформулировано аналогичное правило для антиароматических соединений (Бреслоу, 1959 г.) молекулы, включающие в основном состоянии набор орбиталей с участием Ап п(р)-электронов, образующих замкнутый цикл, являются антиаро-матическими. Естественно, что ароматические молекулы должны быть плоскими, иначе невозможно оёразование многоцентровой п-связи. В дальнейшем ароматические и антиароматические системы, отвечающие приведенным правилам, получили название хюккелевских систем. Следует отметить, что правила ароматиЧ ности и антиароматичности действительны не только для циклических полиенов, но и для циклических переходных состояний.

Ароматичность, правило Хюккеля. Электрофильные и нуклеофильные реакции. Электронодонорность и электроноакценторность заместителей. Индуктивный эффект и эффект сопряжения. Теория замещения, ориентанты I и И рода. Реакции электрофильного и нуклеофильного замещения, реакции присоединения. Переходные состояния. Согласованная и несогласованная ориентация. Спектры (ПМР, ИК и УФ) ароматических соединений.

Зная, что в атомах наряду с секстетом / -электронов существуют и другие устойчивые субоболочки - s , уместно спросить только ли секстет я-электронов ведет к ароматичности молекул Ответ на этот вопрос был дан Хюккелем, сформулировавшим правило 4п-ь2 относительно устойчивыми плоскими моноциклическими системами атомов с тригональной гибридизацией являются только системы, содержащие 4й+2 электронов,

Правило (4и + 2) Хюккеля применимо и к макроциклическим четным полиенам, так называемым аннуленам. Так, ароматичны аннулены с

По этому методу правила орбитальной симметрии связываются с правилом Хюккеля относительно ароматичности, которое обсуждалось в гл. 2. Правило Хюккеля, согласно которому циклическая электронная система, содержащая Ап- -2 электронов, является ароматической (а следовательно, стабильной), применимо, конечно, к молекулам в основных состояниях. При использовании принципа орбитальной симметрии мы имеем дело не с основным, а с переходным состоянием. В этом методе рассматриваются не сами молекулярные орбитали, а скорее р-орбитали до их перекрывания, приводящего к образованию молекулярных орбиталей. Такой набор р-орбиталей называется базисным набором (рис. 15.2). При рассмотрении возможности согласованной реакции орбитали базисного набора необходимо расположить в соответствии с положением, которое они займут в переходном состоянии. На рис. 15.3 это изображено для - и -циклоирисоединения, Затем следует обратить внимание на обращение знака. Из рис. 15.3 очевидно, что ни в одном из случаев обращения знака не происходит. Пунктирная линия на этом рисунке соединяет только отрицательные доли орбиталей. Системы без обращения знака или с четным числом таких обращений называются системами Хюккеля. Системы с нечетным числом инверсий знака называются системами Мёбиуса (по аналогии с лентой Мёбиуса, которая представляет собой математическую поверхность, изображенную на рис. 15.4). Мёбиусовские системы не вступают ни в одну из этих реакций, а примеры таких систем приведены в т. 4 (см. описание реакций 18-31 и 18-36).

Рассмотрение показывает. Что в таком случае происходит обращение правила Хюккеля, и длн 4пл-электронных систем предсказывается ароматичность. Поскольку пока не получена молекула, существующая в основном состоянии со скрученным сопряжением, это предсказание еще предстоит проверить. Однако его корректность подтверждается тем фактом, что переходные состояния с закрученным расгтоложеннем орбиталей, как оказалось, совершййно уместны при рассмотрении многих органических реакций . Мы вернемся к зтому вопросу в следующей главе. Правила ароматичности можно обобщить, включив мёбиусовское расположение орбиталей

Смотреть страницы где упоминается термин Ароматичность Хюккеля правило : Органическая химия Том1 (2004) — [ c.387 ]

ХЮККЕЛЯ ПРАВИЛО

правило ароматичности: циклич. соед., молекулы к-рых состоят из атомов, вносящих в ПИ-электронную систему цикла 4n + 2 р-электронов (n = 0, 1, 2.), обладают ароматич. свойствами. Строго выполняется только для моноциклич. соед. Правило сформулировано Э. Хюккелем в 1931.

Естествознание. Энциклопедический словарь.

Смотреть что такое «ХЮККЕЛЯ ПРАВИЛО» в других словарях:

ХЮККЕЛЯ МЕТОД - квантовохим. метод приближенного расчета энергетич. уровней и мол. орбиталей ненасыщенных орг. соединений. Основан на предположении, согласно к рому движение электрона вблизи атомного ядра в молекуле не зависит от состояний или числа др.… … Химическая энциклопедия

Ароматичность - Ароматичность особое свойство некоторых химических соединений, благодаря которому сопряженное кольцо ненасыщенных связей проявляет аномально высокую стабильность; большую чем та, которую можно было бы ожидать только при одном сопряжении.… … Википедия

АРОМАТИЧНОСТЬ - (от греч. aroma, род. падеж aromatos благовоние), понятие, характеризующее совокупность структурных, энергетич. св в и особенностей реакц. способности циклич. структур с системой сопряженных связей. Термин введен Ф. А. Кекуле (1865) для описания… … Химическая энциклопедия

Ароматические соединения - Запрос «Арены» перенаправляется сюда; см. также другие значения. Бензол одно из наиболее распространённых ароматических соединений Ароматические соединения циклические о … Википедия

p -ЭЛЕКТРОННОЕ ПРИБЛИЖЕНИЕ - квантовохим. метод изучения энергетич. состояний ненасыщенных соед., в к ром св ва молекулы соотносятся со строением системы орбита лей. В рамках молекулярных орбиталей методов все орбитали молекулы, ядерная конфигурация к рой имеет плоскость… … Химическая энциклопедия

ЭЛЕКТРОПРОВОДНОСТЬ ЭЛЕКТРОЛИТОВ - способность электролитов проводить электрич. ток при приложении электрич. напряжения. Носителями тока являются положительно и отрицательно заряженные ионы катионы и анионы, к рые существуют в р ре вследствие электролитич. диссоциации. Ионная Э. э … Химическая энциклопедия

Хюккель Эрих - (Нückel) (1896 1980), немецкий химик и физик. Основные труды в области квантово химических методов изучения строения молекул (правило Хюккеля и др.). Разработал (совместно с П. Дебаем, 1923) теорию сильных электролитов. * * * ХЮККЕЛЬ Эрих ХЮККЕЛЬ … Энциклопедический словарь

Хюккель, Эрих - Эрих Арманд Артур Йозеф Хюккель Erich Armand Arthur Joseph Hückel Эрих Хюккель (1938) … Википедия

Хюккель - Хюккель, Эрих Эрих Арманд Артур Йозеф Хюккель Erich Armand Arthur Joseph Hückel Эрих Хюккель (1938) Дата рождения: 9 августа … Википедия

Хюккель, Эрих Арманд Артур Йозеф - Эрих Хюккель (1938) Эрих Арманд Артур Йозеф Хюккель (нем. Erich Armand Arthur Joseph Hückel) (9 августа 1896, Берлин 16 февраля 1980, Марбург) немецкий физик и химик, один из основоположников квантовой химии, создатель теории сильных электролитов … Википедия

Ароматичность

Ароматичность – понятие, характеризующее совокупность особых структурных, энергетических и магнитных свойств, а также особенностей реакционной способности циклических структур с системой сопряженных связей.

Хотя ароматичность – одна из важнейших и наиболее плодотворных концепций химии (не только органической), — не существует общепринятого краткого определения этого понятия. Ароматичность понимается через совокупность особых признаков (критериев), присущих ряду циклических сопряженных молекул в той или иной мере. Часть этих критериев имеет экспериментальную, наблюдаемую природу, но другая часть основывается на квантовой теории строения молекул. Ароматичность имеет квантовую природу. Невозможно объяснить ароматичность с позиций классической структурной теории и теории резонанса.
Не следует путать ароматичность с делокализацией и сопряжением. В молекулах полиенов (1,3-бутадиена, 1,3,5-гексатриена и т.п.) проявляется явно выраженная тенденция к делокализации электронов и образованию единой сопряженной электронной структуры, что проявляется в спектрах (в первую очередь, электронных спектрах поглощения), некотором изменении длин и порядков связей, энергетической стабилизации, особых химических свойствах (электрофильное 1,4-присоединение в случае диенов и пр.). Делокализация и сопряжение – необходимые, но не достаточные условия ароматичности. Можно дать определение ароматичности как свойства, при котором сопряженное кольцо ненасыщенных связей проявляет бόльшую стабильность, чем ту, которую можно было бы ожидать только при одном сопряжении. Однако этим определением нельзя пользоваться, не имея экспериментальных или расчётных данных по стабильности циклической сопряжённой молекулы.
Для того чтобы молекула могла быть ароматической, она должна содержать хотя бы один цикл, каждый из атомов которого располагает пригодной для образования ароматической системы р-орбиталью. Ароматическим в полном смысле этого слова считается (в случае выполнения критериев, перечисленных ниже) именно этот цикл (кольцо, система колец).
В этом цикле должно быть 4n+2 (то есть 2, 6, 10, 14, 18, 22 и т.п.) p-электронов .
Это правило называется правилом или критерием ароматичности Хюккеля . Источник этого правила – сильно упрощенные квантовохимические расчеты идеализированных циклических полиенов, произведенные на заре развития квантовой химии. Дальнейшие исследования показали, что в основе своей это простое правило дает верные предсказания ароматичности даже и для очень сложных реальных систем.
Правилом, тем не менее, нужно правильно пользоваться, иначе прогноз может быть неверен.

Какие орбитали считаются пригодными для образования ароматической системы? – Любые орбитали, перпендикулярные плоскости цикла, и
а) принадлежащие входящим в цикл кратным (эндоциклическим двойным или тройным) связям;
б) соответствующие неподеленным парам электронов у гетероатомов (азота, кислорода, и т.п.) или карбанионов;
в) соответствующие шестиэлектронным (секстетным) центрам, в частности карбокатионам.

Критерии ароматичности.

Энергетический (повышение термодинамической устойчивости за счет делокализации электронов, так называемая энергия делокализации – ЭД).

Можно представить бензол производным трёх молекул этилена и сравнить энергии исходных фрагментов и конечной молекулы. У каждой молекулы этилена по 2 p-электрона (всего 6) на молекулярных орбиталях (МО) одинаковой энергии (α+β), а у бензола 6 электронов располагаются на трёх связывающих молекулярных орбиталях, давая в сумме более отрицательное значение энергии системы (α и β меньше 0).

Очевидное энергетическое преимущество составляет 2β = 36 ккал/моль или 1,56 эВ – это ЭЭР (эмпирическая энергия резонанса).
Энергетический критерий из всех самый неудобный и неясный. Величины энергий для этого критерия берут всегда расчетные, потому что, как правило, невозможно подобрать соответствующую неароматическую молекулу для сравнения. Следует, поэтому, спокойно относиться к тому, что существует множество различных оценок энергии делокализации даже для классических ароматических молекул, а для более сложных систем эти величины вообще отсутствуют. Никогда нельзя сравнивать разные ароматические системы по величине энергий делокализации – нельзя сделать вывод, что молекула А ароматичнее молекулы В, потому что энергия делокализации больше.
Структурный – очень важный, если не самый важный, критерий, так как имеет не теоретическую, а экспериментальную природу. Специфика геометрии молекул ароматических соединений заключается в тенденции к копланарному расположению атомов и выравниванию длин связей. У бензола выравнивание длин связей идеально – все шесть С-С связей одинаковы по длине. У более сложных молекул выравнивание не идеально, но значительно. В качестве критерия берут меру относительного отклонения длин сопряженных связей от среднего значения. Чем ближе к нулю, тем лучше. Эту величину можно проанализировать всегда, если имеется структурная информация (экспериментальная или из высококачественного квантовохимического расчета). Тенденция к копланарности обуславливается выгодностью параллельного расположения осей атомных р-орбиталей для их эффективного перекрывания.
Магнитный (наличие кольцевого тока – диатропная система, влияние на химические сдвиги протонов снаружи и внутри кольца, примеры – бензол и -аннулен). Самый удобный и доступный критерий, так как для его оценки достаточно спектра 1H ЯМР. Для точного определения используют теоретические расчеты химических сдвигов.
Химический – склонность к реакциям замещения, а не присоединения. Самый наглядный критерий, ясно различающий химию ароматических соединений от химии полиенов. Но работает он далеко не всегда. В ионных системах (например, в циклопентадиенил-анионе или тропилий-катионе) замещение наблюдать невозможно. Реакции замещения иногда проходят и на неароматических системах, а ароматические всегда в какой-то степени способны к реакциям присоединения. Поэтому химический критерий более правильно назвать признаком ароматичности.

Представление энергии ароматической системы.

Общая формула:

E j (энергия орбитали j уровня) = α + m j β
α – кулоновский интеграл, энергия С2р орбитали,
β – резонансный интеграл, энергия взаимодействия 2-х атомных орбиталей на соседних атомах
m j = 2сos(2jπ/N), где N- число атомов углерода в цикле.

Наиболее простым и наглядным графическим изображением энергии являтся круг Фроста . Для его построения необходимо вписать в окружность ароматическую молекулу, направив вершиной вниз, тогда точки соприкосновения многоугольника и окружности будут соответствовать энергетическим уровням МО. По вертикали наносится энергетическая шкала, все уровни ниже горизонтального диаметра – связывающие, выше – разрыхляющие. Электроны заполняют от самой нижней орбитали согласно правилу Паули.

Наиболее выгодным будет такое состояние, когда полностью заполнены все связывающие орбитали.

Попробуйте самостоятельно разобрать, почему является ароматичной молекула азулена, это не очень сложно, он является показательным примером. Нужно построить два круга Фроста (такие как для бензола выше) для обоих фрагментов молекулы: циклопентадиена и циклогептатриена – и станет очевидно, почему молекула приобретает полярность. Картинка-ответ за ссылкой рядом.

Объяснение ароматичности Азулена с помощью круга Фроста

Краткая история Бензола:

Открыт в 1825г. М. Фарадеем — выделен из светильной.
Кекуле размышлял о структуре бензола, и был вдохновлён обезьянами, что водили хоровод, это натолкнуло его на циклическую динамическую модель.


Позднее появилось ещё множество предположений о структуре бензола:

Однако даже до сих пор молекула C 6 H 6 продолжает преподносить сюрпризы. Бодриков И.В.: «Я вынужден констатировать, что сейчас в мире нет человека, кто бы знал, что такое бензол» (2009)

(один из водородов перемещается в положение, перпендикулярное кольцу)

Ароматичность: критерии ароматичности, правило ароматичности Хюккеля, примеры бензоидных и небензоидных ароматических соединений.

Циклические сопряженные системы представляют большой интерес как группа соединений с повышенной термодинамической устойчивостью по сравнению с сопряженными открытыми системами. Эти соединения обладают и другими особыми свойствами, совокупность которых объединяют общим понятием ароматичность. К ним относятся способность таких формально ненасыщенных соединений вступать в реакции замещения, а не присоединения, устойчивость к действию окислителей и температуры.

Типичными представителями ароматических систем являются арены и их производные. Особенности электронного строения ароматических углеводородов наглядно проявляются в атомно-орбитальной модели молекулы бензола. Каркас бензола образуют шесть sp 2 -гибридизованных атомов углерода. Все σ-связи (C-C и C-H) лежат в одной плоскости. Шесть негибридизованных р-АО расположены перпендикулярно плоскости молекулы и параллельно друг другу (рис. 3, а). Каждая р -АО в равной степени может перекрываться с двумя соседними р -АО. В результате такого перекрывания возникает единая делокализованная π-система, наибольшая электронная плотность в которой находится над и под плоскостью σ-скелета и охватывает все атомы углерода цикла (см. рис. 3, б). π-Электронная плотность равномерно распределена по всей циклической системе, что обозначается кружком или пунктиром внутри цикла (см. рис. 3, в). Все связи между атомами углерода в бензольном кольце имеют одинаковую длину (0,139 нм), промежуточную между длинами одинарной и двойной связей.

На основании квантовомеханических расчетов установлено, что для образования таких стабильных молекул плоская циклическая система должна содержать (4n + 2) π-электронов, где n = 1, 2, 3 и т. д . (правило Хюккеля , 1931). С учетом этих данных можно конкретизировать понятие «ароматичность».

Ароматические системы (молекулы) – системы, отвечающие критериям ароматичности :

1) наличие плоского σ-скелета, состоящего из sp 2 -гибридизованных атомов;

2) делокализация электронов, приводящая к образованию единого π-электрон-ного облака, охватывающего все атомы цикла (циклов);

3) соответствие правилу Э. Хюккеля, т.е. электронное облако должно насчитывать 4n+2 π-электронов, где n=1,2,3,4… (обычно цифра указывает на количество циклов в молекуле);

4) высокая степень термодинамической устойчивости (высокая энергия сопряжения).

Рис. 3. Атомно-орбитальная модель молекулы бензола (атомы водорода опущены; объяснение в тексте)

Устойчивость сопряженных систем. Образование сопряженной и особенно ароматической системы — энергетически выгодный процесс, так как при этом увеличивается степень перекрывания орбиталей и происходит делокализация (рассредоточение) р -электронов. В связи с этим сопряженные и ароматические системы обладают повышенной термодинамической устойчивостью. Они содержат меньший запас внутренней энергии и в основном состоянии занимают более низкий энергетический уровень по сравнению с несопряженными системами. По разнице этих уровней можно количественно оценить термодинамическую устойчивость сопряженного соединения, т. е. его энергию сопряжения (энергию делокализации). Для бутадиена-1,3 она невелика и составляет около 15 кДж/моль. С увеличением длины сопряженной цепи энергия сопряжения и соответственно термодинамическая устойчивость соединений возрастают. Энергия сопряжения для бензола гораздо больше и составляет 150 кДж/моль.

Примеры небензоидных ароматических соединений:

Пиридин по электронному строению напоминает бензол. Все атомы углерода и атом азота находятся в состоянии sp 2 -гибридизации, и все σ-связи (C-C, C-N и C-H) лежат в одной плоскости (рис. 4, а). Из трех гибридных орбиталей атома азота две участвуют в образовании

Рис. 4. Пиридиновый атом азота (а), (б) и сопряженная система в молекуле пиридина (в) (связи С-Н для упрощения рисунка опущены)

σ-связей с атомами углерода (показаны только оси этих орбиталей), а третья орбиталь содержит неподеленную пару электронов и в образовании связи не участвует. Атом азота с такой электронной конфигурацией называют пиридиновым.

За счет электрона, находящегося на негибридизованной р-орбитали (см. рис. 4, б), атом азота участвует в образовании единого электронного облака ср -электронами пяти атомов углерода (см. рис. 4, в). Таким образом, пиридин является π,π-сопряженной системой и удовлетворяет критериям ароматичности.

В результате большей электроотрицательности по сравнению с атомом углерода пиридиновый атом азота понижает электронную плотность на атомах углерода ароматического кольца, поэтому системы с пиридиновым атомом азота называют π-недостаточными. Кроме пиридина, примером таких систем служит пиримидин, содержащий два пиридиновых атома азота.

Пиррол также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии sp2-гибридизации. Однако в отличие от пиридина атом азота в пирроле имеет иную электронную конфигурацию (рис. 5, а, б).

Рис. 5. Пиррольный атом азота (а), распределение электронов по орбиталям (б) и сопряженная система в молекуле пиррола (в) (связи С-Н для упрощения рисунка опущены)

На негибридизованной р -орбитали атома азота находится неподеленная пара электронов. Она участвует в сопряжении с р -электрона- ми четырех атомов углерода с образованием единого шестиэлектронного облака (см. рис. 5, в). Три sp 2 -гибридные орбитали образуют три σ-связи — две с атомами углерода, одну с атомом водорода. Атом азота в таком электронном состоянии получил название пиррольного.

Шестиэлектронное облако в пирроле благодаря р,п -сопряжению делокализовано на пяти атомах цикла, поэтому пиррол представляет собой π-избыточную систему.

В фуране и тиофене ароматический секстет также включает неподеленную пару электронов негибридизованной p-АО кислорода или серы соответственно. В имидазоле и пиразоле два атома азота вносят разный вклад в образование делокализованного электронного облака: пиррольный атом азота поставляет пару π-электронов, а пиридиновый — один p-электрон.

Ароматичностью обладает также пурин, представляющий собой конденсированную систему двух гетероциклов — пиримидина и имидазола.

Делокализованное электронное облако в пурине включает 8 π-электронов двойных связей и неподеленную пару электронов атома N=9. Общее число электронов в сопряжении, равное десяти, соответствует формуле Хюккеля (4n + 2, где п = 2).

Гетероциклические ароматические соединения обладают высокой термодинамической устойчивостью. Неудивительно, что именно они служат структурными единицами важнейших биополимеров — нуклеиновых кислот.